Выбрать главу

How does the brain know what's missing from right in front? It doesn't, and it doesn't have to: that's the point. Although 'fills in' and 'missing' are traditional terms in this area of science, they are, again, misleading. The brain doesn't notice that anything is missing, so there isn't a gap to be filled in. The neurons of the visual cortex, the part of the brain that analyses that retinal image into a scene that we can recognise and label, are wired up in elaborate ways, which reinforce certain perceptual prejudices.

For example, experiments with dyes that respond to the brain's electrical signals show that the first layer of the visual cortex detects lines -edges, mostly. The neurons are arranged in local patches, 'hyper-columns', which are assemblies of cells that respond to edges aligned along about eight different directions. Within a hypercolumn, all connections are inhibitory, meaning that if one neuron thinks it has seen an edge pointing along the direction to which it is sensitive, then it tries to stop the other neurons from registering anything at all. The result is that the direction of the edge is determined by a majority yote. In addition, there are also long-range connections between hyper-columns. These are excitatory, and their effect is to bias neighbouring hypercolumns to perceive the natural continuation of that edge, even if the signal they receive is too weak or ambiguous for them to come to that conclusion unaided.

This bias can be overcome by a sufficiently strong indication that there is an edge pointing in a different direction; but if the line gets faint, or part of it is missing, the bias automatically makes the brain respond as if the line was continuous. So the brain doesn't 'fill in' the gaps: it is set up not to notice that there are gaps. That's just one layer of the visual cortex, and it uses a rather simple trick: extrapolation. We have little idea, as yet, of the inspired guesswork that goes on in deeper layers of the brain, but we can be sure that it's even more clever, because it produces such a vivid sensation of a complete image.

What about hearing? How does that relate to sound? The standard lie-to-children about vision is that the cornea and lens make a picture on the retina, and that allegedly explains vision.

Similarly, the corresponding lie-to-children about hearing centres on a part of the ear called the cochlea, whose structure allegedly explains how you analyse sound into different notes. In cross- section, the cochlea looks like a sliced snail-shell, and according to the lie-to-children, there are hair-cells all the way down the spiral attached to a tuned membrane. So different parts of the cochlea vibrate at different frequencies, and the brain detects which frequency -which musical note -it is receiving, by being told which part of the membrane is vibrating. In support of this explanation, we are told a rather nice story about boiler-makers, whose hearing was often damaged by the noise in the factories where they worked. Supposedly, they could hear all frequencies except ones near the frequency that was most common in making boilers. So just one place on their cochlea was burnt out, and the rest worked OK. This proved, of course, that the

'place' theory of hearing was correct.

Actually, this story tells you only how the ear can discriminate notes, not how you hear the noise. To explain that, it is usual to invoke the auditory nerve, which connects the cochlea to the brain. However, there are as many connections, or more, that go in the other direction, from brain to cochlea. You have to tell your ear what to hear.

Now that we can actually look at what the cochlea does when it's hearing, we find not one place vibrating for each frequency, but more like twenty. And these places move as you flex your outer ear. The cochlea is phase-sensitive, it can discriminate the kind of difference that makes an 'ooh'

sound different from an 'eeh' at the same frequency. This is the kind of change to the sound that you make when you change the shape of your mouth as you speak. And surprise, surprise, that's just the difference that the cochlea -after your outer ear and your own particular auditory canal, and your own particular eardrum and those three little bones -can best discriminate. A recording from someone else's eardrum, played back up against yours, makes little sense. You have learned your own ears. But you have taught them, too.

There are about seventy basic sounds, called phonemes, that Homo sapiens uses in speech. Up to about six months old, all human babies can discriminate all of these, and an electrode on the auditory nerve gives different patterns of electrical activity for each. At about six to nine months old, we start talking scribble, and it very soon becomes English scribble or Japanese scribble. By a year old the Japanese ear cannot distinguish 'l' from 'r', because both phonemes send the same message from cochlea to brain. English babies can't discriminate the different clicks of the !Kung San, nor the differences between the distinct 'r's in French. So our sense organs do not show us the real world. They stimulate our brains to produce, to invent if you like, an internal world made of the counters, the Lego™ set, that each of us has built up as we mature.

Such apparently straightforward abilities as vision and hearing are far more complicated than we usually imagine. Our brains are much more than just passive recipients. An awful lot is going on inside our heads, and we project some of it back into what we think is the outside world. We are conscious only of a small part of its output. These hidden depths and strange associations in the brain may well be responsible for our musical sensibilities.

Music exercises the mind; it's a form of play. It seems probable that our liking for music is linked to other things than our ears. In particular, the brain's motor activity may be involved, as well as its sensory activity. In primitive tribes and advanced societies, music and dance often go together. So it may be the combination of sound and movement that appeals to our brains, rather than one or the other. In fact, music may be an almost accidental by-product of how our brains put the two together.

Patterns of movement have been common in our world for millions of years, and their evolutionary advantage is clear. The pattern 'climb a tree' can protect a savannah ape from a predator, and the same goes for the pattern 'run very fast'. Our bodies surround us with linked patterns of movement and sound. Like music, they are patterns in time, rhythms. Breathing, the heartbeat, voices in synch with lips, loud bangs in synch with things hitting other things.

There are common rhythms in the firing of nerve cells and the movement of muscles. Different gaits - the human walk and run, the walk-trot-canter-gallop of the horse -can be characterised by the timing with which different limbs move. These patterns relate to the mechanics of bone and muscle, and also to the electronics of the brain and the nervous system. So Nature has provided us with rhythm, one of the key elements of music, as a side-effect of animal physiology.

Another key element, pitch and harmony, is closely related to the physics and mathematics of sound. The ancient Pythagoreans discovered that when different notes sounded harmonious, there was a simple mathematical relationship between the lengths of the strings that produced them, which we now recognise as a relation between their frequencies. The octave, for example, corresponds to a doubling of frequency. Simple whole number ratios are harmonious, complicated relationships are not.

One explanation for this is purely physical. If notes with frequencies that are not related by simple whole numbers are sounded together, they interfere with each other to produce 'beats', a jarring low-frequency buzz. Sounds that make the sensory hairs in our ears vibrate in simple patterns are necessarily harmonious in the Pythagorean sense, and if they aren't, we hear the beats and they have an unpleasant effect. There are many mathematical patterns in musical scales, and they can be traced, to a great extent, to the physics of sound.