Выбрать главу

I felt drawn to Puthoff, because his academic qualifications, not to mention his connections to the military, put him squarely in a place that I could relate to; yet, he was clearly also involved in strange science.

His résumé, which I had pulled off the Internet, said that he had graduated from Stanford University in 1967 and that his professional background had spanned more than three decades of research at General Electric, Sperry, the Stanford Research Institute (SRI) and the National Security Agency, the NSA, the government's super-clandestine electronic eavesdropping organization.

It also told how he "regularly served various corporations, government agencies, the Executive Branch and Congress as a consultant on leadingedge technologies and future technology trends" and that he had patents issued in the laser, communications and energy fields. Puthoff was no lightweight.

What his résumé didn't describe was one of the strangest episodes in the history of U.S. intelligence gathering: a program, known as remote viewing or RV, that enabled the Central Intelligence Agency and the Defense Intelligence Agency to spy on America's enemies using clairvoyance. For years, depending on whom you believed, this highly organized, well-funded operation had proven remarkably successful, providing reams of usable data on Soviet military activities that were inaccessible to more traditional intelligence gatherers, such as spy satellites and aircraft.

RV remained buried, deeply classified, until 1995, when the CIA finally admitted it had used "psychic spies" against Russia during the Cold War.

Puthoff had been the RV program's founder and first director and had run it for 13 years, finally leaving SRI in 1985 to establish his own institute, the IAS, at Austin. And now, he was up to his ears in gravity work. If the U.S. government had instituted a top secret antigravity program, decades before possibly, then chances were Puthoff was either directly involved, knew about it, or, at the very least, had some inkling of it. On the other hand, doing what he'd done, acting as a consultant to some of the government bodies he still advised, I knew that Puthoff breathed the same air as people for whom disinformation was a just another part of the tool kit.

Ordinarily, I would have been wasting my time and Puthoff's. My limited, workaday knowledge of physics put me at an enormous disadvantage when it came to sorting out good information from bad in the antigravity field. But on that day, as the miles to Austin sped by, I had some help. Deep in the heart of Britain's own aerospace and defense establishment, I had found someone to decode the intricate mysteries of gravity for me.

I wound back the clock to the time when I'd attended a trade conference many years earlier. It had been entitled "Antigravity! The End of Aerodynamics." I'd only gone along because of the caliber of the speaker: Brian Young, Professor of Physics at Salford University. Young was also Director of Strategic Projects for British Aerospace (BAe) Defence, Britain's biggest military contractor.

The lecture had been given at the London headquarters of the Institution of Mechanical Engineers, IMechE, just off Parliament Square. Handouts beforehand (which I'd clipped to my copy of the transcript) had set the theme: "Gravity is the most mysterious of all the natural forces. It appears completely indifferent to anything we try to do to control it. Nonetheless, its very presence is the driver for the whole science and business of aeronautics. Scientists from the very distinguished to the very ridiculous have tried for over 300 years to either explain it or destroy it. Technology is making tremendous strides in all directions and perhaps we are getting close. If so, is this the end of aerodynamics?" I chewed over the words of Young's speech, according it a respect I hadn't given it on the night it was given. Now I wished I had. I recalled the elegant marbled hallway and the low hubbub of conversation as I'd drifted among the attendees — a hodgepodge of MoD men and aerospace industry executives, some of whom were familiar to me — waiting for the doors to open into the auditorium.

Young had kicked off his talk by reiterating our general state of ignorance about gravity. "It is an incredibly weak force," he'd said, "although it probably didn't seem so to the Wright Brothers and I suspect most mountain climbers would disagree violently.

"But really gigantic quantities of matter, about 6x10 (to the power of 21) tonnes in the case of the Earth, are required to produce the gravity field in which we live. If you think of a simple horseshoe magnet lifting a piece of iron, then, as far as that piece of iron is concerned, the magnet weighing a few ounces is outpulling the whole Earth."

He flashed up a set of artist's impressions showing how three different kinds of antigravity vehicles might look assuming engines could be built for them.

One, a "heavy-lifter," looking much like an airship, was depicted effortlessly transporting a giant section of roadbridge through the air. Young made the assumption that the antigravity engine of the heavylifter not only canceled the weight of the craft, but its underslung load as well.

Another, saucer-shaped, craft, described as being like a bus for "city hopper" applications, used a "toroidal" or doughnut-shaped engine to allow it to skip between "stops" in a futuristic-looking metropolis.

The third showed a combat aircraft with a green-glowing antigravity lift engine on its underside for vertical takeoff and landing (VTOL) and conventional jet engines for forward propulsion.

But all these things were fiction, he stressed, so the designs were simply conjecture. "The more I have read and thought about antigravity and its terrestrial applications, the more I have become convinced that as it stands today it is going nowhere. Whatever name the press may give experiments, either in someone's garage or in Geneva, most of the real work is trying to uncover basic knowledge and few people really believe it will lead to gravity control.

"To the contrary, a view I have seen expressed is that if gravity control is ever discovered it will be as an unexpected by-product of work in some completely different field."

To which he'd added a rider. Were he to have gotten it all wrong, were an antigravity effect ever to be discovered, the growth of the industry surrounding it would be exponential — look what had happened after Faraday's discovery of electromagnetic induction in 1831. Within five years, the electric motor industry was born. Within seventy, the generation of electricity was huge business. Today, it is hard to conceive of a time when man-made electricity did not exist.

I vaguely remembered going up to Young after the lecture and chatting to him about some of the points he'd raised. But now I kicked myself. If only I'd paid more bloody attention.

Soon after I'd returned from the low-key archive in Washington that housed the Lusty documents, I'd picked up the phone and dialed British Aerospace. Through to the public relations department and I logged the request. Could they get me Professor Young's phone number?

Forty minutes later, the media manager called back to say that Professor Young had died, of a heart attack he thought, some years earlier.

I put the phone down, a little shocked at the news, and pinched the bridge of my nose, looking for that extra bit of concentration. What had Young and I talked about? Down into the basement and another protracted rifle through a box taped up and marked "notebooks: 1989—94." There in among my old reporter's pads, after an hour on my hands and knees, I found the one that I'd taken with me that night to IMechE. I started reading and flicking pages.

The notes I'd jotted down were piss poor, highlighting terms like "gravito magnetic permeability" and "toroidal engine" and putting big question marks against them.