Выбрать главу

And then, on page three of the Electrogravitics Systems report I saw the mention of Thomas Townsend Brown — the "Townsend T. Brown" of the Interavia piece in the Jane's library.

The report referred to Brown's "Project Winterhaven." Apparently, Brown had invented a whole new approach to the mechanics of flight.

This notion of electrogravitic lift supposedly worked on the principle that a plate-like object charged positively on one side and negatively on the other would always exhibit thrust toward the positive pole, i.e. from negative to positive. If the plate is mounted horizontally and the positive pole is uppermost, the object will in effect lose weight, because it will want to rise skyward.

I was in no rush to judge the validity of the physics. But I'd worked in the business long enough to know that the military would be quick to dismiss anything that wasn't practical. So the key question for me was how the military had viewed Brown's work.

I called the Integrity Research Institute and asked Tom Valone to send me as much information as his organization possessed on Brown.

Then, over the next few weeks, my life assumed a pattern. In the dead hours, long after the phone stopped ringing, I'd head down into the basement, fire up the computer and hit the Net, staying on-line deep into the night.

My great regret was that I couldn't contact George S. Trimble directly. Had I done so, I knew that Abelman would have gone ballistic. She'd told me to stay away from him and she had the power to ensure that I became an outcast if I didn't. Lockheed Martin was a large company and its word would spread quickly.

In that respect, Cross was right. Pretty soon, no one would want to talk to a technology hack who was running around asking madcap questions about antigravity.

Better, then, to do what I was doing; keep a lid on it. Here, in the silence of the night, I could roam the Internet and remain anonymous. Besides, it really did seem to be a case of reviewing the evidence and following up the clues — clues that had apparently never registered with the experts who had been reporting on all this for years.

That in itself was seductive. Little by little, I could feel myself being pulled in.

Chapter 3

Thomas Townsend Brown was born into a prominent family from Zanesville, Ohio, in 1905, two years after the Wright Brothers, residents of nearby Dayton, propelled their "Flyer," the first aircraft capable of sustained powered flight, into the sky at Kitty Hawk, North Carolina. From an early age, Brown exhibited traits that would later come to mark his work as a scientist. As a child, he built a workshop in his backyard and at the age often was already receiving signals from across the Atlantic on a homemade radio-receiver. At 16, he was broadcasting from his own radio station.

For all his prowess as an inventor, Brown appears to have been a somewhat recalcitrant student. In 1922, he was enrolled at the California Institute of Technology (Cal Tech), but soon fell into a disagreement with his teachers over the time allowed by the Institution for laboratory work, something he lived for. After failing his first year exams in chemistry and physics, he persuaded his father to sponsor the construction of a laboratory of his own. With no expense spared, a lab was installed on the second floor of their new house in Pasadena.

The quid pro quo, apparently, was that "T.T." had to receive home tuition to boost his grades. Brown subsequently reported that he made considerable progress in chemistry, while still finding time to devise an X-ray spectrometer for astronomical measurements. It was at this point that he began to develop his first theories about electrogravitation. In essence, Brown believed that gravitation might be a form of radiation, much like light, with a "push" as opposed to a "pull" effect.

"Word of this got out among my classmates," he related in a document called "A Short Autobiography," which I found on the Net, "and although shunned and made fun of by the professors, I was nevertheless called to the attention of Dr. Robert Andrew Millikan, Director of Cal Tech and, incidentally, my first physics teacher, who explained to me in great detail, why such an explanation of gravitation was utterly impossible and not to be considered." In 1923, Brown transferred to Kenyon College, Gambier, Ohio, and the following year switched to Ohio's Denison University where he came under the tutelage of physicist and astronomer Dr. Paul Alfred Biefeld, a former classmate of Einstein's in Switzerland. In earlier experimentation, Brown had made the startling discovery that a Coolidge X-ray tube exhibited thrust when charged to high voltage. It took Brown a while to realize that the motion was not caused by the X rays themselves, but by the electricity coursing through the tube. Brown went on to develop a device he called the "Gravitor," an electrical condenser sealed in a Bakelite case, that would exhibit a one percent weight gain or a one percent weight loss when connected to a 100-kilovolt power supply.

In 1929, Brown wrote up his discoveries in a paper entitled How I Control Gravitation and speculated as to how his invention might one day be used:

"The Gravitor, in all reality, is a very efficient motor. Unlike other forms of motor, it does not in any way involve the principles of electromagnetism, but instead it utilizes the principles of electro-gravitation.

"A simple gravitor has no moving parts, but is apparently capable of moving itself from within itself. It is highly efficient for the reason that it uses no gears, shafts, propellers or wheels in creating its motive power. It has no internal mechanical resistance and no observable rise in temperature. Contrary to the common belief that gravitational motors must necessarily be vertical-acting, the gravitor, it is found, acts equally well in every conceivable direction."

This ability to manipulate the force in all axes opened up the Gravitor's potential to aviation. Brown's research led him to the development of a shape that was the most efficient in the production of electrogravitational lift: that of a perfect disc or saucer.

The way he proposed to control the craft was by dividing the disc into segments, each of which could be selectively charged. By moving the charge around the rim of the saucer, it would, Brown said, be possible to make it move in any direction. I had to remind myself that this was the 1920s. The aviation industry was still absorbing the technical lessons of the First World War, the biplane was king and fighters, typified by the Boeing Model ISA, a leading U.S. design of the mid-1920s, were struggling to attain top speeds of 160 mph.