71
There was one report in a Japanese journal in the 1920s regarding an unusually high incidence of bulbar palsy in Saipan, though it is unclear whether this could have been a manifestation of lytico. Of the fifteen cases of lytico-bodig in Saipan described by Gajdusek et al., all but two had been born before the First World War and the youngest had been born in 1929. In several cases, according to John, the parents of these patients had been born in Guam or Rota.
72
Research on cycad neurotoxicity, somewhat dormant since the 1960s, has again become very active in several places. Tom Mabry and Delia Brownson at the University of Texas at Austin are working on the relation between cycads and lytico-bodig, looking at the effect of the putative Guam neurotoxins on rat brain-cell preparations. And Alan Seawright at the (Australian) National Research Centre for Environmental Toxicity has been investigating the effects of MAM and BMAA in experimental animals.
73
Zhang and his colleagues, re-examining the geographic variation of lytico-bodig on Guam over a twenty-year period, have confirmed the very close correlation of local cycasin levels with the disease. But such ‘correlations,’ they point out, however close, do not necessarily imply a simple cause-and-effect relationship. Though there are rare forms of Alzheimer’s disease, Parkinson’s disease, and ALS with a simple Mendelian pattern, these are the exception and not the rule. Ordinary Alzheimer’s, Parkinson’s, and ALS, it seems, are complex disorders in which the actual expression of disease is contingent on a variety of genetic and environmental factors. Indeed we are now discovering, as Spencer points out, that such gene-environment interactions are involved in many other conditions. Thus a rare but terrible side effect of streptomycin – which was introduced for the treatment of tuberculosis, but caused a total and irremediable nerve deafness in some patients – has now been found to depend on the presence of a mitochondrial DNA defect that gives no hint of its existence unless streptomycin is given.
A variety of disorders, sometimes familial but lacking the usual Mendelian patterns of inheritance, may arise, similarly, from mutations in the mitochondrial DNA. This seems to be the case in a rare syndrome in which deafness is combined with diabetes, nephropathy, photomyoclonus, and cerebral degeneration (this syndrome, or a very similar one, was originally described in 1964 by Herrmann, Aguilar, and Sacks). Mitochondrial DNA is transmitted only maternally, and Wiederholt and others have wondered whether, in the critical period between 1670 and 1710, when the Chamorro males were virtually exterminated and the population reduced, in effect, to a few hundred females, such a mitochondrial mutation may have arisen and spread in the generations that followed, especially in certain families. Such a mutation may have sensitized those in whom it occurred so that otherwise benign environmental agents might, in them, set off the fatal degenerative processes of lytico-bodig.
74
Marie Stopes was born in London in 1880, showed insatiable curiosity and scientific gifts as an adolescent, and despite strong disapprobation (similar to that which delayed the entry of women into medicine at the time) was able to enter University College, where she obtained a Gold Medal and a first-class degree in botany. Her passion for paleobotany was already developing by this time, and after graduating she went to the Botanical Institute in Munich, where she was the only woman among five hundred students. Her research on cycad ovules earned her a Ph.D. in botany, the first ever given a woman.
In 1905 she received her doctorate in science from London University, making her the youngest D.Sc. in the country. The following year, while working on a massive two-volume Cretaceous Flora for the British Museum, she also published The Study of Plant Life for Toung People, a delightful book which showed her literary power and her insight into youthful imaginations, no less than her botanical expertise. She continued to publish many scientific papers, and in 1910 another popular book, Ancient Plants. Other writings, romantic novels and poems, were also stirring in her at this time, and in A Journal from Japan she gave poignant fictional form to her own painfully frustrated love for an eminent Japanese botanist.
By this time other interests were competing with botany. Stopes wrote a letter to The Times supporting women’s suffrage, and became increasingly conscious of how much sexually, as well as politically and professionally, women needed to be liberated. From 1914 on, though there was an overlap with palaeobotany for a few years, Stopes’s work dealt essentially with human love and sexuality. She was the first to write about sexual intercourse in a matter-of-fact way, doing so with the same lucidity and accuracy she had in her description of the fertilization of cycad ovules – but also with a tenderness which was like a foretaste of D.H. Lawrence. Her books Married Love (1918), Letter to Working Mothers (1919), and Radiant Motherhood (1920) were immensely popular at the time; no one else spoke with quite her accent or authority.
Later Stopes met Margaret Sanger, the great American pioneer of birth control, and she became its chief advocate in England. Contraception, Its Theory, History and Practice was published in 1923, and this led to the setting up of Marie Stopes clinics in London and elsewhere. Her voice, her message, had little appeal after the Second World War, and her name, once instantly recognized by all, faded into virtual oblivion. And yet, even in old age, her paleobotanical interests never deserted her; coal balls, she often said, were really her first love.
75
The Copernican revolution in the sixteenth and seventeenth centuries, with its revelation of the immensity of space, dealt a profound blow to man’s sense of being at the center of the universe; this was voiced by no one more poignantly than Pascaclass="underline" ‘The whole visible world is but an imperceptible speck,’ he lamented; man was now ‘lost in this remote corner of Nature,’ closed into ‘the tiny cell where he lodges.’ And Kepler spoke of a ‘hidden and secret horror,’ a sense of being ‘lost’ in the infinity of space.
The eighteenth century, with its close attention to rocks and fossils and geologic processes, was to radically alter man’s sense of time as well (as Rossi, Gould, and McPhee, in particular, have emphasized). Evolutionary time, geologic time, deep time, was not a concept which came naturally or easily to the human mind, and once conceived, aroused fear and resistance.
There was great comfort in the feeling that the earth was made for man and its history coeval with his, that the past was to be measured on a human scale, no more than a few score of generations back to the first man, Adam. But now the biblical chronology of the earth was vastly extended, into a period of eons. Thus while Archbishop Ussher had calculated that the world was created in 4004 B.C., when Buffon introduced his secular view of nature – with man appearing only in the latest of seven epochs – he suggested an unprecedented age of 75,000 years for the earth. Privately, he increased this time scale by forty – the original figure in his manuscripts was three million years – and he did this (as Rossi notes) because he felt that the larger figure would be incomprehensible to his contemporaries, would give them too fearful a sense of the ‘dark abyss’ of time. Less than fifty years later, Playfair was to write of how, gazing at an ancient geologic unconformity, ‘the mind seemed to grow giddy by looking so far into the abyss of time.’