Evolution is the ultimate example of how much a simple learning algorithm can achieve given enough data. Its input is the experience and fate of all living creatures that ever existed. (Now that’s big data.) On the other hand, it’s been running for over three billion years on the most powerful computer on Earth: Earth itself. A computer version of it had better be faster and less data intensive than the original. Which one is the better model for the Master Algorithm: evolution or the brain? This is machine learning’s version of the nature versus nurture debate. And, just as nature and nurture combine to produce us, perhaps the true Master Algorithm contains elements of both.
The argument from physics
In a famous 1959 essay, the physicist and Nobel laureate Eugene Wigner marveled at what he called “the unreasonable effectiveness of mathematics in the natural sciences.” By what miracle do laws induced from scant observations turn out to apply far beyond them? How can the laws be many orders of magnitude more precise than the data they are based on? Most of all, why is it that the simple, abstract language of mathematics can accurately capture so much of our infinitely complex world? Wigner considered this a deep mystery, in equal parts fortunate and unfathomable. Nevertheless, it is so, and the Master Algorithm is a logical extension of it.
If the world were just a blooming, buzzing confusion, there would be reason to doubt the existence of a universal learner. But if everything we experience is the product of a few simple laws, then it makes sense that a single algorithm can induce all that can be induced. All the Master Algorithm has to do is provide a shortcut to the laws’ consequences, replacing impossibly long mathematical derivations with much shorter ones based on actual observations.
For example, we believe that the laws of physics gave rise to evolution, but we don’t know how. Instead, we can induce natural selection directly from observations, as Darwin did. Countless wrong inferences could be drawn from those observations, but most of them never occur to us, because our inferences are influenced by our broad knowledge of the world, and that knowledge is consistent with the laws of nature.
How much of the character of physical law percolates up to higher domains like biology and sociology remains to be seen, but the study of chaos provides many tantalizing examples of very different systems with similar behavior, and the theory of universality explains them. The Mandelbrot set is a beautiful example of how a very simple iterative procedure can give rise to an inexhaustible variety of forms. If the mountains, rivers, clouds, and trees of the world are all the result of such procedures-and fractal geometry shows they are-perhaps those procedures are just different parametrizations of a single one that we can induce from them.
In physics, the same equations applied to different quantities often describe phenomena in completely different fields, like quantum mechanics, electromagnetism, and fluid dynamics. The wave equation, the diffusion equation, Poisson’s equation: once we discover it in one field, we can more readily discover it in others; and once we’ve learned how to solve it in one field, we know how to solve it in all. Moreover, all these equations are quite simple and involve the same few derivatives of quantities with respect to space and time. Quite conceivably, they are all instances of a master equation, and all the Master Algorithm needs to do is figure out how to instantiate it for different data sets.
Another line of evidence comes from optimization, the branch of mathematics concerned with finding the input to a function that produces its highest output. For example, finding the sequence of stock purchases and sales that maximizes your total returns is an optimization problem. In optimization, simple functions often give rise to surprisingly complex solutions. Optimization plays a prominent role in almost every field of science, technology, and business, including machine learning. Each field optimizes within the constraints defined by optimizations in other fields. We try to maximize our happiness within economic constraints, which are firms’ best solutions within the constraints of the available technology-which in turn consists of the best solutions we could find within the constraints of biology and physics. Biology, in turn, is the result of optimization by evolution within the constraints of physics and chemistry, and the laws of physics themselves are solutions to optimization problems. Perhaps, then, everything that exists is the progressive solution of an overarching optimization problem, and the Master Algorithm follows from the statement of that problem.
Physicists and mathematicians are not the only ones who find unexpected connections between disparate fields. In his book Consilience, the distinguished biologist E. O. Wilson makes an impassioned argument for the unity of all knowledge, from science to the humanities. The Master Algorithm is the ultimate expression of this unity: if all knowledge shares a common pattern, the Master Algorithm exists, and vice versa.
Nevertheless, physics is unique in its simplicity. Outside physics and engineering, the track record of mathematics is more mixed. Sometimes it’s only reasonably effective, and sometimes its models are too oversimplified to be useful. This tendency to oversimplify stems from the limitations of the human mind, however, not from the limitations of mathematics. Most of the brain’s hardware (or rather, wetware) is devoted to sensing and moving, and to do math we have to borrow parts of it that evolved for language. Computers have no such limitations and can easily turn big data into very complex models. Machine learning is what you get when the unreasonable effectiveness of mathematics meets the unreasonable effectiveness of data. Biology and sociology will never be as simple as physics, but the method by which we discover their truths can be.
The argument from statistics
According to one school of statisticians, a single simple formula underlies all learning. Bayes’ theorem, as the formula is known, tells you how to update your beliefs whenever you see new evidence. A Bayesian learner starts with a set of hypotheses about the world. When it sees a new piece of data, the hypotheses that are compatible with it become more likely, and the hypotheses that aren’t become less likely (or even impossible). After seeing enough data, a single hypothesis dominates, or a few do. For example, if I’m looking for a program that accurately predicts stock movements and a stock that a candidate program had predicted would go up instead goes down, that candidate loses credibility. After I’ve reviewed a number of candidates, only a few credible ones will remain, and they will encapsulate my new knowledge of the stock market.
Bayes’ theorem is a machine that turns data into knowledge. According to Bayesian statisticians, it’s the only correct way to turn data into knowledge. If they’re right, either Bayes’ theorem is the Master Algorithm or it’s the engine that drives it. Other statisticians have serious reservations about the way Bayes’ theorem is used and prefer different ways to learn from data. In the days before computers, Bayes’ theorem could only be applied to very simple problems, and the idea of it as a universal learner would have seemed far-fetched. With big data and big computing to go with it, however, Bayes can find its way in vast hypothesis spaces and has spread to every conceivable field of knowledge. If there’s a limit to what Bayes can learn, we haven’t found it yet.