Tissue engineers will be able to grow new organs to replace patients’ old or diseased ones, using either synthetic materials or a person’s own cells. At the outset, affordability will limit the use. Synthetic skin grafts, which exist today, will give way to grafts made from burn victims’ own cells. Inside hospitals, robots will take on more responsibilities, as surgeons increasingly let sophisticated machines handle difficult parts of certain procedures, where delicate or tedious work is involved or a wider range of motion is required.2
Advances in genetic testing will usher in the era of personalized medicine. Through targeted tests and genome sequencing (decoding a person’s full DNA), doctors and disease specialists will have more information about patients, and what might help them, than ever before. Despite steady scientific progress, severe negative reactions to prescribed drugs remain a leading cause of hospitalization and death. Pharmaceutical companies traditionally pursue a “one-size-fits-all” approach to drug development, but this is due to change as the burgeoning field of pharmacogenetics continues to develop. Better genetic testing will reduce the likelihood of negative reactions, improve patients’ chances and provide doctors and medical researchers with more data to analyze and use. Eventually, and initially only for the wealthy, it will be possible to design pharmaceutical drugs tailored to an individual’s genetic structure. But this too will change as the cost of DNA sequencing drops below $100 and almost everything biological is sequenced, making it possible for a much broader segment of the world’s population to benefit from highly specific, personalized diagnoses.
For those living in developing countries, basic connectivity and access to the virtual world will offer a resource they can leverage to improve their own quality of life, and nowhere more so than in the area of health. Even though their environment in the physical world is colored by inadequate care, lack of available vaccines and medicines, broken health systems and other exogenous factors that create health crises (like conflict-related internal migration), many important gains in health care will be driven by innovative uses of mobile phones, largely by individuals and other nongovernmental actors who seize the opportunity to drive change in an otherwise stagnant system. We already see this happening. Across the developing world today, the “mobile health” revolution—mobile phones used as tools to connect patients to doctors, to monitor drug distribution and to increase the reach of health clinics—is responsible for a number of improvements as a range of technology start-ups, nonprofits and entrepreneurs tackle difficult problems with technology-first solutions. Mobile phones are now used to track drug shipments and verify their authenticity, to share basic health information that isn’t available locally, to send reminders about medication and appointments to patients, and to gather data about health indicators that government officials, NGOs and other actors can use to design their programs. The central problems in health sectors in poor places, like understaffed clinics, underserved patients in remote places, too few medications or inefficient distribution of them, and misinformation about vaccines and disease prevention, will all find at least partial solutions through connectivity.
At the very least, the adoption of mobile phones gives people a new level of agency over their personal health, even though the devices themselves, of course, can’t cure illness. People can use their phones to access information about preventative health care or recovery. They can use basic diagnostic tools embedded in their phones—maybe not X-rays, but cameras and audio recordings. A woman can take a picture of a lesion, or a recording of a cough, and send that information to a doctor or health professional, whom she can then interact with remotely, efficiently, affordably and privately. Digital solutions like these are not a perfect substitute for a properly functioning health sector, but in the meantime, they can offer new information and interactions that at a minimum will chip away at a larger and more entrenched multigenerational problem.
The Upper Band
Connectivity benefits everyone. Those who have none will have some, and those who have a lot will have even more. To demonstrate that, imagine you are a young urban professional living in an American city a few decades from now. An average morning might look something like this:
There will be no alarm clock in your wake-up routine—at least, not in the traditional sense. Instead, you’ll be roused by the aroma of freshly brewed coffee, by light entering your room as curtains open automatically, and by a gentle back massage administered by your high-tech bed. You’re more likely to awake refreshed, because inside your mattress there’s a special sensor that monitors your sleeping rhythms, determining precisely when to wake you so as not to interrupt a REM cycle.
Your apartment is an electronic orchestra, and you are the conductor. With simple flicks of the wrist and spoken instructions, you can control temperature, humidity, ambient music and lighting. You are able to skim through the day’s news on translucent screens while a freshly cleaned suit is retrieved from your automated closet because your calendar indicates an important meeting today. You head to the kitchen for breakfast and the translucent news display follows, as a projected hologram hovering just in front of you, using motion detection, as you walk down the hallway. You grab a mug of coffee and a fresh pastry, cooked to perfection in your humidity-controlled oven—and skim new e-mails on a holographic “tablet” projected in front of you. Your central computer system suggests a list of chores your housekeeping robots should tackle today, all of which you approve. It further suggests that, since your coffee supply is projected to run out next Wednesday, you consider purchasing a certain larger-size container that it noticed currently on sale online. Alternatively, it offers a few recent reviews of other coffee blends your friends enjoy.
As you mull this over, you pull up your notes for a presentation you’ll give later that day to important new clients abroad. All of your data—from your personal and professional life—is accessible through all of your various devices, as it’s stored in the cloud, a remote digital-storage system with near limitless capacity. You own a few different and interchangeable digital devices; one is the size of a tablet, another the size of a pocket watch, while others might be flexible or wearable. All will be lightweight, incredibly fast and will use more powerful processors than anything available today.