Выбрать главу

“So, have you signed up for the outing tomorrow? I can lend you my camera,” he said. “They all want a little photo of Wiles’s blackboard with the QED.”

“I’m not sure I’ll be going,” I said.

“Why not? There’s a free bus and Cambridge is a beautiful place too, in a very English way. Have you been?”

As he turned the page absently, his eyes alighted upon the long article about the murders and the series of symbols. He read the first two or three lines and, alarmed, wary, looked at me.

“You knew all about it yesterday, didn’t you? How long have these murders been going on?” he asked.

I said that the first one occurred almost a month ago, but that the police had only now decided to reveal the symbols.

“And what is Seldom’s part in all this?”

“The notes after each murder are addressed to him. The second message, with the symbol of the fish, appeared here, stuck to the revolving door at the entrance.”

“Ah, yes, I remember a small disturbance that morning. I saw the police, but I thought someone had broken a window.”

He went back to the newspaper and finished reading the article.

“But Seldom’s name doesn’t appear anywhere here.”

“The police don’t want to reveal that the three messages have been addressed to him.”

He looked at me again but his expression had changed: he now seemed amused.

“So someone is playing cat and mouse with the great Seldom. Perhaps there is divine justice after all. Dispensed by a mathematician god, of course,” he said mysteriously. “What do you imagine the fourth murder will be like?” he asked. “A death in keeping with the ancient solemnity of the tetraktys?” He looked around as if searching for inspiration. “I seem to remember that Seldom liked bowling, at least at one time,” he said. “The game wasn’t very well known in Russia then. In his lecture, he compared the points of the tetraktys to the layout of the pins at the start of a game. And there’s a shot where you knock down all ten pins on the first ball.”

“Strike,” I said.

“Yes, exactly. Isn’t that a magnificent word?” And he repeated it in his strong Russian accent, smiling strangely, as if he was picturing an implacable ball and heads rolling. “Strike!”

Nineteen

By five o’clock I’d finished the first draft of my report. Before leaving the office I checked my e-mail again. There was a short message from Seldom asking me to meet him at Merton after his seminar, if I was free. I’d have to hurry to get there on time. I climbed the small staircase that led to the classrooms and, peering through the glass door, saw him discussing a problem on the blackboard with two students who had stayed behind.

The students left and he motioned for me to enter. While he put away his notes, he pointed to a circle drawn on the board and said:

“We were discussing Nicholas of Cusa’s geometrical metaphor-the truth as a circumference and human attempts to approach it as a series of inscribed polygons, with more and more sides, coming close in the end to a circular form. It’s an optimistic metaphor, because successive stages enable one to sense the final figure. There is, however, another possibility, one that my students still aren’t aware of and which is much more discouraging.” Beside the circle he quickly drew an irregular figure with numerous points and clefts. “Suppose for a moment that the truth was the shape, say, of an island like Britain, with a very irregular coastline, with endless projections and inlets. This time, when you try to approximate the figure by means of polygons, you encounter Mandelbrot’s paradox. The edge remains elusive, breaking up at each new attempt into ever more projections and inlets, and human efforts to determine it simply never arrive at a final figure. Similarly, the truth may not yield to the series of human approximations. What does this remind you of?”

“Godel’s theorem? The polygons would be systems with more and more axioms, but a part of the truth is always beyond reach.”

“Perhaps, in a sense. But it’s also like this case, and Wittgenstein’s and Frankie’s conclusion: the known terms of a series, any number of terms, are always insufficient. How can one know a priori with which of these two figures we’re dealing? You know,” he said suddenly, “my father had a big library, with a bookcase in the middle where he kept the books I wasn’t allowed to read, a bookcase with a door that locked. When he opened it, all I could ever see was an engraving he’d stuck inside, of a man touching the ground with one hand and holding his other arm up in the air. Under the picture there was a caption in a language I didn’t know, which I eventually found out was German. I also later discovered a book that I thought miraculous: a bilingual dictionary my father used when he was teaching his classes. I deciphered the words one by one. The sentence was simple and mysterious: “Man is no more than the series of his actions.” I had a child’s absolute faith in the words and I started to see people as temporary, incomplete figures; figures in draft form, ever elusive. If a man is no more than the series of his actions, I realised, then he can’t be defined before his death: a single action, his last, could wipe out his previous existence, contradict his entire life. And, above all, it was precisely the series of my actions that I most feared. Man was no more than what I most feared.”

He showed me his hands, which were covered in chalk dust. He must have touched his face inadvertently because there was also a comical white mark on his forehead.

“I’ll be back in a minute-I’m just going to wash my hands,” he said. “If you go downstairs you’ll find the cafeteria. Would you get me a large coffee, please? Without sugar.”

I ordered two coffees. Seldom reappeared just in time to carry his own cup to a table set slightly apart from the rest, with a view of the gardens. Through the open door of the cafeteria we could see the continuous stream of tourists entering the college and heading for the quads.

“I had a chat with Inspector Peter sen this morning,” said Seldom. “He told me about their dilemma over the counting yesterday evening. On one hand they knew the exact number of people who entered the gardens of the palace from the ticket stubs collected as they arrived, and on the other they knew the number of seats occupied. The person in charge of seating is particularly meticulous and assured them that he had added only the chairs that were strictly needed. Now here’s the strange thing: when they finished the count it turned out that there were more people than seats. Three people didn’t use their seats.”

Seldom looked at me as if expecting me to find the explanation immediately. I pondered for a moment, slightly embarrassed.

“I thought it wasn’t done in England to sneak into concerts without paying,” I said.

Seldom laughed frankly.

“Not to charity concerts anyway. Oh, don’t think about it any more; it really is very silly. Petersen was just teasing me. He was in a good mood for once today. The three extra people were disabled, in wheelchairs. Petersen was delighted with his counting. In the list drawn up by his assistants there was nobody missing and nobody extra. For the first time he thinks he’s narrowed down the search: instead of the five hundred thousand people in Oxfordshire, now he only has to concern himself with the eight hundred who attended the concert. And he thinks he’ll quickly be able to narrow it down even further.”

“The three people in wheelchairs,” I said.

Seldom smiled.

“Yes, in theory the three wheelchair users as well as a group of children with Down’s Syndrome from a special school, and several very elderly ladies-the most likely-could all have been potential victims.”

“Do you think the deciding factor in his choice of victim is age?”

“I know you’ve got another theory: that he chooses people who are living on borrowed time, living longer than expected. Yes, in that case age would not be an excluding factor.”