The second hitch seemed to be no hitch at all. An "enriched" pile-one in which U-235 or plutonium had been added to natural uranium-was a quite satisfactory source of commercial power. We knew how to get U-235 and plutonium; that was the primary accomplishment of the Manhattan Project.
Or did we know how? Hanford produced plutonium; Oak Ridge extracted U-235, true-but the Hanford piles used more U-235 than they produced plutonium and Oak Ridge produced nothing but merely separated out the 7/10 of one percent of U-235 in natural uranium and "threw away" the 99%-plus of the energy which was still locked in the discarded U-238. Commercially ridiculous, economically fantastic!
But there was another way to breed plutonium, by means of a high-energy, unmoderated pile of natural uranium somewhat enriched. At a million electron volts or more U-238 will fission at somewhat lower energies it turns to plutonium. Such a pile supplies its own "fire" and produces more "fuel" than it uses; it could breed fuel for many other power piles of the usual moderated sort.
But an unmoderated power pile is almost by definition an atom bomb.
The very name "pile" comes from the pile of graphite bricks and uranium slugs set up in a squash court at the University of Chicago at the very beginning of the Manhattan Project. Such a pile, moderated by graphite or heavy water, cannot explode.
Nobody knew what an unmoderated, high-energy pile might do. It would breed plutonium in great quantities- but would it explode? Explode with such violence as to make the Nagasaki bomb seem like a popgun?
Nobody knew.
In the meantime the power-hungry technology of the United States grew still more demanding. The Douglas Martin sunpower screens met the immediate crisis when oil became too scarce to be wasted as fuel, but sunpower was limited to about one horsepower per square yard and was at the mercy of the weather.
Atomic power was needed-demanded.
Atomic engineers lived through the period in an agony of indecision. Perhaps a breeder pile could be controlled. Or perhaps if it did go out of control it would simply blow itself apart and thus extinguish its own fires. Perhaps it would explode like several atom bombs but with low efficiency. But it might-it just might-explode its whole mass of many tons of uranium at once and destroy the human race in the process.
There is an old story, not true, which tells of a scientist who had made a machine which would instantly destroy the world, so he believed, if he closed one switch. He wanted to know whether or not lie was right. So he closed the switch-and never found out.
The atomic engineers were afraid to close the switch.
"It was Destry's mechanics of infinitesimals that showed a way out of the, dilemma," King went on. "His equations appeared to predict that such an atomic explosion, once started, would disrupt the molar mass enclosing it so rapidly that neutron loss through the outer surface of the fragments would dampen the progression of the atomic explosion to zero before complete explosion could be reached. In an atom bomb such damping actually occurs.
"For the mass we use in the pile, his equations predicted possible force of explosion one-seventh of one percent of the force of complete explosion. That alone, of course, would be incomprehensibly destructive-enough to wreck this end of the state. Personally, I've never been sure that is all that would happen."
"Then why did you accept this job?" inquired Lentz.
King fiddled with items on his desk before replying. "I couldn't turn it down, doctor I couldn't. If I had refused, they would have gotten someone else-and it was an opportunity that comes to a physicist once in history."
Lentz nodded. "And probably they would- have gotten someone not as competent. I understand, Dr. King-you were compelled by the 'truth-tropism' of the scientist. He must go where the data is to be found, even if it kills him. But about this fellow Destry, I've never liked his mathematics; he postulates too much."
King looked up in quick surprise, then recalled that this was the man who had refined and given rigor to the calculus of statement. "That's just the hitch," he agreed. "His work is brilliant, but I've never been sure that his predictions were worth the paper they were written on. Nor, apparently," he added bitterly, "do my junior engineers."
He told the psychiatrist Of the difficulties they had had with personnel, of how the most carefully selected men would, sooner or later, crack under the strain. "At first I thought it might be some degenerating effect from the neutron radiation that leaks out through the shielding, so we improved the screening and the personal armor. But it didn't help. One young fellow who had joined us after the new screening was installed became violent at dinner one night, and insisted that a pork chop was about to explode. I hate to think of what might have happened if he had been on duty at the pile when he blew up."
The inauguration of the system of constant psychological observation had greatly reduced the probability of acute danger resulting from a watch engineer cracking up, but King was forced to admit that the system was not a success; there had actually been a marked increase in psychoneuroses, dating from that time.
"And that's the picture, Dr. Lentz. It gets worse all the time. It's getting me now. The strain is telling on me; I can't sleep, and I don't think my judgment is as good as it used to be-I have trouble making up my mind, of coming to a decision. Do you think you can do anything for us?"
But Lentz had no immediate relief for his anxiety. "Not so fast, superintendent," he countered. "You have given me the background, but I have no real data as yet. I must look around for a while, smell out the situation for myself, talk to your engineers, perhaps have a few drinks with them, and get acquainted. That is possible, is it not? Then in a few days, maybe, we know where we stand."
King had no alternative but to agree.
"And it is well that your young men do not know what I am here for. Suppose I am your old friend, a visiting physicist, eh?"
"Why, yes-of course. I can see to it that that idea gets around. But say-" King was reminded again of something that had bothered him from the time Silard had first suggested Lentz' name. "May I ask a personal question?"
The merry eyes were undisturbed. "Go ahead."
"I can't help but be surprised that one man should attain eminence in two such widely differing fields as psychology and mathematics. And right now I'm perfectly convinced of your ability to pass yourself off as a physicist. I don't understand it."
The smile was more amused, without being in the least patronizing, nor offensive. "Same subject," he answered.
"Eh? How's that-"
"Or rather, both mathematical physics and psychology are branches of the same subject, symbology. You are a specialist; it' would not necessarily come to your attention."
"I still don't follow you."
"No? Man lives in a world of ideas. Any phenomenon is so complex that he cannot possibly grasp the whole of it. He abstracts certain characteristics of a given phenomenon as an idea, then represents that idea as a symbol, be it a word or a mathematical sign. Human reaction is almost entirely reaction to symbols, and only negligibly to phenomena. As a matter Of fact," he continued, removing the cigarette holder from his mouth and settling into his subject, "it can be demonstrated that the human mind can think only in terms of symbols.
"When we think, we let symbols operate on other symbols in certain, set fashions-rules of logic, or rules of mathematics. If the symbols have been abstracted so that they are structurally similar to the phenomena they stand for, and if the symbol operations are similar in structure and order to the operations of phenomena in the ~real~ world, we think sanely. If our logic-mathematics, or our word-symbols, have been poorly chosen, we think not sanely.