Выбрать главу

The resulting parental burden makes care by the father as well as the mother important for a child's survival. Orangutan fathers provide their offspring with nothing beyond their initial donation of semen; gorilla, chimpanzee, and gibbon fathers go beyond that to offer protection; but hunter—gatherer human fathers provide some food and much teaching as well. Hence human food-gathering habits required a social system in which a male retained his relationship with a female after fertilizing her, in order to assist in rearing the resulting child. Otherwise, the child would be less likely to survive, and the father less likely to pass on his genes. The orangutan system, in which the father departs after copulation, would not work for us. The chimpanzee system, in which several adult males are likely to copulate with the same oestrus female, also would not work for us. The result of that system is that a chimpanzee father has no idea which infants in the troop he has sired. For the chimp father that is no loss, as his exertions on behalf of troop infants are modest. The human father, however, who will contribute significantly to the care of what he thinks is his child, had better have some confidence in his paternity—for example, through having been the exclusive sexual partner of the child's mother. Otherwise, his child-care contribution may help pass on some other man's genes.

Confidence in paternity would be no problem if humans, like gibbons, were scattered over the landscape as separate couples, so that each female would only rarely encounter a male other than her consort. But there are compelling reasons why almost all human populations have consisted of groups of adults, despite the paranoia about paternity that this causes. Among the reasons: much human hunting and gathering involves cooperative group efforts among men, women, or both; much of our wild food occurs in scattered but concentrated patches, able to sustain many people; and groups offer better protection against predators and aggressors, especially against other humans.

In short, the social system we evolved to accommodate our un-apelike food habits seems utterly normal to us, but is bizarre by ape standards and is virtually unique among mammals. Adult orangutans are solitary; adult gibbons live as separate monogamous male/female pairs; gorillas live in polygamous harems, each consisting of several adult females and usually one dominant adult male; common chimpanzees live in fairly promiscuous communities consisting of scattered females plus a group of males; and pygmy chimpanzees form even more promiscuous communities of both sexes. Our societies, like our food habits, resemble those of lions and wolves: we live in bands containing many adult males and many adult females. Furthermore, we diverge from even lions and wolves in how those societies are organized: our males and females are paired off with each other. In contrast, any male lion within a lion pride can and regularly does mate with any of the pride's lionesses, making paternity unidentifiable. Our peculiar societies instead have their closest parallels in colonies of seabirds, like gulls and penguins, which also consist of male/female pairs.

At least officially, human pairing is more or less monogamous in most modern political states, but is 'mildly polygynous' among most surviving hunter-gatherer bands, which are better models for how mankind lived over the last million years. (This description omits consideration of extramarital sex, through which we become effectively more polygamous and whose scientifically fascinating aspects I shall discuss in Chapter Four.) By 'mildly polygynous', I mean that most hunter-gatherer men can support only a single family, but a few powerful men have several wives. Polygyny on the scale of elephant seals, among which powerful males have dozens of wives, is impossible for hunter-gatherer men, because they differ from elephant seals in having to provide child care. The big harems for which some human potentates are famous didn't become possible until the rise of agriculture and centralized government let a few princes tax everyone else in order to feed the royal harem's babies.

Now let's see how this social organization shapes the bodies of men and women. Take first the fact that adult men are slightly bigger than similarly aged women (about eight per cent taller and twenty per cent heavier, on the average). A zoologist from outer space would take one look at my 5-foot 8-inch wife next to me (5 foot 10 inches), and would instantly guess that we belonged to a mildly polygynous species. How, you may ask, can one possibly guess mating practices from relative body size?

MALES, AS FEMALES SEE THEM

chimp

man

orangutan

gorilla

Humans and great apes differ with respect to the relative body size of males and females, penis length, and testis size. The main circles represent the body size of the male of each species, relative to that of the female of the same species. Female body size is arbitrarily shown as the same for all species at upper right. Thus, chimps of both sexes weigh about the same; men are slightly larger than women; but male orangutans and gorillas are much bigger than females. The arrows on the male symbols are proportional to the length of the erect penis, while the twin circles represent testis weight relative to that of the body. Men have the longest penis, chimps the largest testes, and orangutans and gorillas the shortest penis and smallest testes.

FEMALES, AS MALES SEE THEM

chimp

woman

orangutan

gorilla

Human females are unique in their breasts, which are considerably larger than those of apes even before the first pregnancy. The main circles represent female body size relative to male body size of the same species.

It turns out that, among polygynous mammals, average harem size increases with the ratio of the male's body size to the female's body size. That is, the biggest harems are typical of species in which males are much larger than females. For example, males and females are the same size in gibbons, which are monogamous; male gorillas, with a typical harem of three to six females, weigh nearly double the weight of each female; but the average harem is forty-eight wives for the southern elephant seal, whose 3-ton male dwarfs his 700-pound wives. The explanation is that, in a monogamous species, every male can win a female, but in a very polygynous species most males languish without any mate, because a few dominant males have succeeded in rounding up all the females into their harems. Hence, the bigger the harem, the fiercer is the competition among males and the more important it is for a male to be big, since the bigger male usually wins the fights. We humans, with our slightly bigger males and slight polygyny, fit this pattern. (However, at some point in human evolution, male intelligence and personality came to count for Wore than size: male basketball players and sumo wrestlers don't tend to have more wives than male jockeys or coxswains.) Because competition for mates is fiercer in polygynous than in monogamous species, the polygynous species also tend to have more marked differences between males and females in other respects besides body size. These differences are the secondary sexual characteristics that play a role in attracting mates. For instance, males and females of the monogamous gibbons look identical at a distance, while male gorillas (befitting their polygyny) are easily recognized by their crested heads and silver-haired backs. Here too, our anatomy reflects our mild polygyny. The external differences between men and women are not nearly as marked as sex-related differences in gorillas or orangutans, but the zoologist from outer space could probably still distinguish men and women by the body and facial hair of men, men's unusually large penis, and the large breasts of women even before first pregnancy (in this we are unique among primates).