Выбрать главу

The early Sagas spoke, too, of the abundant fruit of excellent quality growing in Greenland, and of the number of cattle that could be pastured there. The Norwegian settlements were located in places that are now at the foot of glaciers. There are Eskimo legends of old houses and churches buried under the ice. The Danish Archaeological Expedition sent out by the National Museum of Copenhagen was never able to find all of the villages mentioned in the old records. But its excavations indicated clearly that the colonists lived in a climate definitely milder than the present one.

But these bland climatic conditions begin to deteriorate in the thirteenth century. The Eskimos began to make troublesome raids, perhaps because their northern sealing grounds were frozen over and they were hungry. They attacked the western settlement near the present Ameralik Fiord, and when an official mission went out from the eastern colony about 1342, not a single colonist could be found—only a few cattle remained. The eastern settlement was wiped out some time after 1418 and the houses and churches destroyed by fire. Perhaps the fate of the Greenland colonies was in part due to the fact that ships from Iceland and Europe were finding it increasingly difficult to reach Greenland, and the colonists had to be left to their own resources.

The climatic rigors experienced in Greenland in the thirteenth and fourteenth centuries were felt also in Europe in a series of unusual events and extraordinary catastrophes. The seacoast of Holland was devastated by storm floods. Old Icelandic records say that, in the winters by the early 1300’s, packs of wolves crossed on the ice from Norway to Denmark. The entire Baltic froze over, forming a bridge of solid ice between Sweden and the Danish islands. Pedestrians and carriages crossed the frozen sea and hostelries were put up on the ice to accommodate them. The freezing of the Baltic seems to have shifted the course of storms originating in the low-pressure belt south of Iceland. In southern Europe, as a result, there were unusual storms, crop failures, famine, and distress. Icelandic literature abounds in tales of volcanic eruptions and other violent natural catastrophes that occurred during the fourteenth century.

What of the previous era of cold and storms, which should have occurred about the third or fourth century B.C., according too the tidal theory? There are shadowy hints in early literature and folklore. The dark and brooding poetry of the Edda deals with a great catastrophe, the Fimbul-winter or Götterdämmerung, when frost and snow ruled the world for generations. When Pytheas journeyed to the seas north of Iceland in 330 B.C., he spoke of the mare pigrum, a sluggish, congealed sea. Early history contains striking suggestions that the restless movements of the tribes of northern Europe—the southward migrations of the ‘barbarians’ who shook the power of Rome—coincided with periods of storms, floods, and other climatic catastrophes that forced their migrations. Large-scale inundations of the sea destroyed the homelands of the Teutons and Cimbrians in Jutland and sent them southward into Gaul. Tradition among the Druids said that their ancestors had been expelled from their lands on the far side of the Rhine by enemy tribes and by ‘a great invasion of the ocean.’ And about the year 700 B.C. the trade routes for amber, found on the coasts of the North Sea, were suddenly shifted to the east. The old route came down along the Elbe, the Weser, and the Danube, through the Brenner Pass to Italy. The new route followed the Vistula, suggesting that the source of supply was then the Baltic. Perhaps storm floods had destroyed the earlier amber districts, as they invaded these same regions eighteen centuries later.

All these ancient records of climatic variations seemed to Pettersson an indication that cyclic changes in the oceanic circulation and in the conditions of the Atlantic had occurred. ‘No geologic alteration that could influence the climate has occurred for the past six or seven centuries,’ he wrote. The very nature of these phenomena—floods, inundations, ice blockades—suggested to him a dislocation of the oceanic circulation. Applying the discoveries in his laboratory on Gulmarfiord, he believed that the climatic changes were brought about as the tide-induced submarine waves disturbed the deep waters of polar seas. Although tidal movements are often weak at the surface of these seas, they set up strong pulsations at the submarine boundaries, where there is a layer of comparatively fresh, cold water lying upon a layer of salty, warmer water. In the years or the centuries of strong tidal forces, unusual quantities of warm Atlantic water press into the Arctic Sea at deep levels, moving in under the ice. Then thousands of square miles of ice that normally remain solidly frozen undergo partial thawing and break up. Drift ice, in extraordinary volume, enters the Labrador Current and is carried southward into the Atlantic. This changes the pattern of surface circulation, which is so intimately related to the winds, the rainfall, and the air temperatures. For the drift ice then attacks the Gulf Stream south of Newfoundland and sends it on a more easterly course, deflecting the streams of warm surface water that usually bring a softening effect to the climate of Greenland, Iceland, Spitsbergen, and northern Europe. The position of the low-pressure belt south of Iceland is also shifted, with further direct effect on European climate.

Although the really catastrophic disturbances of the polar regime come only every eighteen centuries, according to Pettersson, there are also rhythmically occurring periods that fall at varying intervals—for example, every 9, 18, or 36 years. These correspond to other tidal cycles. They produce climatic variations of shorter period and of less drastic nature.

The year 1903, for instance, was memorable for its outbursts of polar ice in the Arctic and for the repercussions on Scandinavian fisheries. There was ‘a general failure of cod, herring, and other fish along the coast from Finmarken and Lofoten to the Skagerrak and Kattegat. The greater part of the Barents Sea was covered with pack ice up to May, the ice border approaching closer to the Murman and Finmarken coasts than ever before. Herds of arctic seals visited these coasts, and some species of the arctic whitefish extended their migrations to the Christiana Fiord and even entered into the Baltic.’ This outbreak of ice came in a year when earth, moon, and sun were in a relative position that gives a secondary maximum of the tide-producing forces. The similar constellation of 1912 was another great ice year in the Labrador Current—a year that brought the disaster of the Titantic.

Now in our own lifetime we are witnessing a startling alteration of climate, and it is intriguing to apply Otto Pettersson’s ideas as a possible explanation. It is now established beyond question that a definite change in the arctic climate set in about 1900, that it became astonishingly marked about 1930, and that it is now spreading into sub-arctic and temperate regions. The frigid top of the world is very clearly warming up.

The trend toward a milder climate in the Arctic is perhaps most strikingly apparent in the greater ease of navigation in the North Atlantic and the Arctic Sea. In 1932, for example, the Knipowitsch sailed around Franz Josef Land for the first time in the history of arctic voyaging. And three years later the Russian ice-breaker Sadko went from the northern tip of Novaya Zemlya to a point north of Severnaya Zemlya (Northern Land) and thence to 82° 41’ north latitude—the northernmost point ever reached by a ship under its own power.