The phrase “500-year storm” is also very helpful on the question of resilience. Even a devastated community, buckled in suffering, can endure a long period of recovery if it is wealthy and politically stable and needs to rebuild only once a century—perhaps even once every fifty years. But rebuilding for a decade in the wake of spectacular storms that hit once a decade, or once every two decades, is an entirely different matter, even for countries as rich as the United States and regions as well-off as greater Houston. New Orleans is still reeling from Katrina, a dozen years on, with the Lower Ninth Ward barely one-third as populated as it was before the storm. And it surely doesn’t help that the entire coastline of Louisiana is being swallowed by the sea, with 2,000 square miles already gone. The state loses a football field of land every single hour. In the Florida Keys, 150 miles of road need to be raised to stay ahead of sea level, costing as much as $7 million each mile, or up to $1 billion, total. The county’s 2018 road budget was $25 million.
For the world’s poor, recovery from storms like Katrina and Irma and Harvey, hitting more and more often, is almost impossible. The best choice is often simply to leave. In the months after Hurricane Maria devastated Puerto Rico, thousands of islanders arrived in Florida, thinking it might be for good. Of course, that land is disappearing, too.
Freshwater Drain
Seventy-one percent of the planet is covered in water. Barely more than 2 percent of that water is fresh, and only 1 percent of that water, at most, is accessible, with the rest trapped mostly in glaciers. Which means, in essence, as National Geographic has calculated, only 0.007 percent of the planet’s water is available to fuel and feed its seven billion people.
Think of freshwater shortages and you probably feel an itch in your throat, but in fact hydration is just a sliver of what we need water for. Globally, between 70 and 80 percent of freshwater is used for food production and agriculture, with an additional 10 to 20 percent set aside for industry. And the crisis is not principally driven by climate change—that 0.007 percent should be, believe it or not, plenty, not just for the seven billion of us here but for as many as nine billion, perhaps even a bit more. Of course, we are likely heading north of nine billion this century, to a global population of at least ten and possibly twelve billion. As with food scarcity, much of the growth is expected in parts of the world already most strained by water shortage—in this case, urban Africa. In many African countries already, you are expected to get by on as little as twenty liters of water each day—less than half of what water organizations say is necessary for public health. As soon as 2030, global water demand is expected to outstrip supply by 40 percent.
Today, the crisis is political—which is to say, not inevitable or necessary or beyond our capacity to fix—and, therefore, functionally elective. That is one reason it is nevertheless harrowing as a climate parable: an abundant resource made scarce through governmental neglect and indifference, bad infrastructure and contamination, careless urbanization and development. There is no need for a water crisis, in other words, but we have one anyway, and aren’t doing much to address it. Some cities lose more water to leaks than they deliver to homes: even in the United States, leaks and theft account for an estimated loss of 16 percent of freshwater; in Brazil, the estimate is 40 percent. In both cases, as everywhere, scarcity plays out so nakedly on a stage defined by have-and-have-not inequities that the resulting drama of resource competition can hardly be called, truly, a competition; the deck is so stacked that water shortage looks more like a tool of inequality. The global result is that as many as 2.1 billion people around the world do not have access to safe drinking water, and 4.5 billion don’t have safely managed water for sanitation.
Like global warming, the water crisis is soluble, at present. But that 0.007 percent leaves an awfully thin margin, and climate change will cut into it. Half of the world’s population depends on seasonal melt from high-elevation snow and ice, deposits that are dramatically threatened by warming. Even if we hit the Paris targets, the glaciers of the Himalayas will lose 40 percent of their ice by 2100, or possibly more, and there could be widespread water shortages in Peru and California, the result of glacier melt. At four degrees, the snow-capped Alps could look more like Morocco’s Atlas Mountains, with 70 percent less snow by the end of the century. As soon as 2020, as many as 250 million Africans could face water shortages due to climate change; by the 2050s, the number could hit a billion people in Asia alone. By the same year, the World Bank found, freshwater availability in cities around the world could decline by as much as two-thirds. Overall, according to the United Nations, five billion people could have poor access to freshwater by 2050.
The United States won’t be spared—boomtown Phoenix is, for instance, already in emergency planning mode, which should not surprise, given that even London is beginning to worry over water shortages. But given the reassurances of wealth—which can buy stopgap solutions and additional short-term supply—the United States will not be the worst hit. In India, already, 600 million face “high to extreme water stress,” according to a 2018 government report, and 200,000 people die each year from lacking or contaminated water. By 2030, according to the same report, India will have only half the water it needs. In 1947, when the country was formed, per capita water availability in Pakistan stood at 5,000 cubic meters; today, thanks mostly to population growth, it is at 1,000; and soon continued growth and climate change will bring it down to 400.
In the last hundred years, many of the planet’s largest lakes have begun drying up, from the Aral Sea in central Asia, which was once the world’s fourth largest and which has lost more than 90 percent of its volume in recent decades, to Lake Mead, which supplies much of Las Vegas’s water and has lost as much as 400 billion gallons in a single year. Lake Poopó, once Bolivia’s second biggest, has completely disappeared; Iran’s Lake Urmia has shrunk more than 80 percent in thirty years. Lake Chad has more or less evaporated entirely. Climate change is only one factor in this story, but its impact is not going to shrink over time.
What goes on within those lakes that survive is perhaps just as distressing. In China’s Lake Tai, for instance, the blooming of warmwater-friendly bacteria in 2007 threatened the drinking water of two million people; the heating-up of East Africa’s Lake Tanganyika has imperiled the fish stock harvested and eaten by millions in four adjacent, hungry nations. Freshwater lakes, by the way, account for up to 16 percent of the world’s natural methane emissions, and scientists estimate that climate-fueled aquatic plant growth could double those emissions over the next fifty years.
We’re already racing, as a short-term fix for the world’s drought boom, to drain underground water deposits known as aquifers, but those deposits took millions of years to accumulate and aren’t coming back anytime soon. In the United States, aquifers already supply a fifth of our water needs; as Brian Clark Howard has noted, wells that used to draw water at 500 feet now require pumps at least twice as deep. The Colorado River Basin, which serves water to seven states, lost twelve cubic miles of groundwater between 2004 and 2013; the Ogallala Aquifer in part of the Texas Panhandle lost 15 feet in a decade, and is expected to drain by 70 percent over the next fifty years in Kansas. In the meantime, they’re fracking in that drinking water. In India, in just the next two years, twenty-one cities could exhaust their groundwater supply.
—
The first Day Zero in Cape Town was in March 2018, the day when the city, a few months earlier and enduring its worst drought in decades, had predicted its taps would run proverbially dry.