Выбрать главу
[85]. То, что они были приведены богом к наивысшей возможной для них красоте и к наивысшему совершенству из совсем иного состояния, пусть останется для нас преимущественным и незыблемым утверждением; но теперь мне следует попытаться пояснить вам устройство и рождение каждого из четырех родов. Рассказ мой будет непривычен, но, раз вы сроднились с теми путями научения, без которых но обойтись моим речам, вы последуете за мной. Во-первых, каждому, разумеется, ясно, что огонь и земля, вода и воздух суть тела, а всякое тело имеет глубину. Между тем любая глубина по необходимости должна быть ограничена некоторыми поверхностями; притом всякая прямолинейная поверхность состоит из треугольников. Однако все вообще треугольники восходят к двум, из которых каждый имеет по одному прямому углу и по два острых, но при этом у одного по обе стороны от прямого угла лежат равные углы величиной в одну и ту же долю прямого угла, ограниченные равными сторонами, а у другого – неравные углы, ограниченные неравными сторонами. Здесь-то мы и полагаем начало огня и всех прочих тел, следуя в этом вероятности, соединенной с необходимостью; те же начала, что лежат еще ближе к истоку, ведает бог, а из людей разве что тот, кто друг богу. Теперь должно сказать, каковы же те четыре рожденных тела, прекраснейшие из всех, которые не подобны друг другу, однако способны, разрушаясь, друг в друга перерождаться. Если нам удастся попасть в точку, у нас в руках будет истина о рождении земли и огня, а равно и тех [стихий], что стоят между ними как средние члены пропорции. Тогда мы никому не уступили бы в том, что нет видимых тел более прекрасных, чем эти, притом каждое из них прекрасно в своем роде. Поэтому надо приложить старания к тому, чтобы привести в соответствие четыре отличающихся красотой рода тел и доказать, что мы достаточно уразумели их природу. Из двух названных раньше треугольников равнобедренный получил в удел одну природу, тогда как неравнобедренный – бесчисленное их множество. Из этого множества нам должно избрать наилучшее, если мы хотим приступить к делу надлежащим образом. Что ж, если кто-нибудь выберет и назовет нечто еще более прекрасное, предназначенное для того, чтобы создавать эти [четыре тела], мы подчинимся ему не как неприятелю, но как другу; нам же представляется, что между множеством треугольников есть один, прекраснейший, ради которого мы оставим все прочие, а именно тот, который в соединении с подобным ему образует третий треугольник – равносторонний. Обосновывать это было бы слишком долго (впрочем, если бы кто изобличил нас и доказал обратное, мы охотно признали бы его победителем). Итак, нам приходится отдать предпочтение двум треугольникам как таким, из которых составлено тело огня и [трех] прочих тел: один из них равнобедренный, а другой таков, что в нем квадрат большей стороны в три раза больше квадрата меньшей. Hо мы обязаны более четко определить одну вещь, о которой прежде говорилось неясно. В самом деле, нам казалось, будто все четыре рода могут последовательно перерождаться друг в друга, но такая видимость была неправильной. Ведь четыре рода действительно рождаются из выбранных нами треугольников: три рода слагаются из одного и того же неравнобедренного треугольника и только четвертый род – из равнобедренного, а значит, не все роды могут разрешаться друг в друга и рождаться один из другого путем соединения большого количества малых [величин] в малое количество больших, и обратно. Если это и возможно, то лишь для вышеназванных первых трех [родов], ведь коль скоро все они произошли из единой [основы], то при разрушении более крупных [тел] из их [частей] составится множество малых, принимающих свойственные им очертания; и, напротив, если разъять много малых [тел] на отдельные треугольники, они образуют единое количество однородной массы, из которой возникнет единое большое [тело] иного вида. Вот как обстоит дело с их переходом друг в друга. Следующей нашей задачей будет изложить, какой вид имеет каждое тело и из сочетания каких чисел оно рождается. Начнем с первого вида, состоящего из самых малых частей: его первоначало треугольник, у которого гипотенуза вдвое длиннее меньшего катета. Если такие треугольники сложить, совмещая их гипотенузы, и повторить такое действие трижды, притом так, чтобы меньшие катеты и гипотенузы сошлись в одной точке как в своем центре, то из шестикратного числа треугольников будет рожден один, и он будет равносторонним. Когда же четыре равносторонних треугольника окажутся соединенными в три двугранных угла, они образуют один объемный угол, а именно такой, который занимает место вслед за самым тупым из плоских углов. Завершив построение четырех таких углов, мы получаем первый объемный вид, имеющий свойство делить всю описанную около него сферу на равные и подобные части. Второй вид строится из таких же исходных треугольников, соединившихся в восемь равносторонних треугольников и образующих каждый раз из четырех плоских углов по одному объемному; когда таких объемных углов шесть, второе тело получает завершенность. Третий вид образуется из сложения ста двадцати исходных треугольников и двенадцати объемных углов, каждый из которых охвачен пятью равносторонними треугольными плоскостями, так что все тело имеет двадцать граней, являющих собой равносторонние треугольники. На этом порождении и кончилась задача первого из первоначал. Но равнобедренный треугольник породил природу четвертого [вида], и притом так, что четыре треугольника, прямые углы которых встречались в одном центре, образовывали квадрат; а из сложения шести квадратов возникало восемь объемных углов, каждый из которых гармонично охватывается тремя плоскими прямыми углами. Составившееся таким образом тело имело очертания куба, наделенного шестью квадратными плоскими гранями. В запасе оставалось еще пятое многогранное построение, его бог определил для Вселенной и прибегнул к нему в качестве образца. Если бы теперь кто-нибудь, тщательно обдумывая все сказанное, задался вопросом, следует ли допустить бесчисленные космосы или ограниченное их число, ему пришлось бы заключить, что вывод относительно неограниченности этого числа позволительно делать разве что тому, кто сам очень ограничен, и притом в вопросах, которые следовало бы знать. Если, однако, поставить иной вопрос существует ли один космос или их на самом деле пять, то здесь, естественно, причин для затруднения было бы куда больше. Что касается нас, то мы, согласно правдоподобным словам и указаниям бога, утверждаем, что существует один космос; но другой, взглянув на вещи иначе, составит себе, пожалуй, иное мнение. Как бы то ни было, оставим этот вопрос и начнем разделять роды, только что рожденные в нашем слове, на огонь, землю, воду и воздух. Земле мы, конечно, припишем вид куба, ведь из всех четырех родов наиболее неподвижна и пригодна к образованию тел именно земля, а потому ей необходимо иметь самые устойчивые основания. Между тем не только из наших исходных треугольников равнобедренный, если взять его как основание, по природе устойчивее неравностороннего, но и образующийся из сложения двух равнобедренных треугольников квадрат с необходимостью более устойчив, нежели равносторонний треугольник, причем соотношение это сохраняет силу как для частей, так и для целого. Значит, мы не нарушим правдоподобия, если назначим этот удел земле, а равно и в том случае, если наименее подвижный из остальных видов отведем воде, наиболее подвижный – огню, а средний – воздуху; далее, наименьшее тело огню, наибольшее – воде, а среднее – воздуху, и, наконец, самое остроугольное тело – огню, следующее за ним – воздуху, а третье – воде. Hо из всех вышеназванных тел наиболее подвижно по природе своей и по необходимости то, у которого наименьшее число оснований, ибо оно со всех сторон имеет наиболее режущие грани и колющие углы, а к тому же оно и самое легкое, коль скоро в его состав входит наименьшее число исходных частей. То тело, которое обладает такими же свойствами, по второго порядка, и место займет второе, а то, которое обладает третьим порядком этих свойств, – третье. Пусть же объемный образ пирамиды и будет, в согласии со справедливым рассуждением и с правдоподобием, первоначалом и семенем огня; второе по рождению тело мы назовем воздухом, третье же – водой. Но при этом мы должны представить себе, что все эти [тела] до такой степени малы, что единичное [тело] каждого из перечисленных родов по причине своей малости для нас невидимо, и лишь складывающиеся из их множеств массы бросаются нам в глаза
вернуться

85

Образ и число наряду со строем и мерой – важнейшие категории античной философии, причем вторая пара характерна для гераклитовцев, а первая – для пифагорейцев с их геометрическими фигурами. – 456.