Мы сначала представляли, что поток электронов непрерывно исторгается из электронной пушки на Рис. 4.3. Но мы можем уменьшить настрой пушки так, что она будет выстреливать все меньше и меньше электронов каждую секунду; фактически, мы можем уменьшить его совсем, так что она будет испускать, скажем, один электрон каждые десять секунд. При достаточном терпении мы можем проводить этот эксперимент в течение длительного периода времени и фиксировать положения соударений каждого индивидуального электрона, который прошел через щели. Рис. 4.4а – 4.4с показывают итоговые обобщенные данные после часа, половины дня и полного дня. В 1920-е годы изображения, подобные этим, перевернули основания физики. Мы видим, что даже индивидуальные, отдельные электроны, двигаясь к экрану независимо, отдельно от остальных, один за одним, выстраивают интерференционную картинку, характеризующую волны.
Это похоже на то, как если бы индивидуальная молекула Н2О каким- то образом стала себя вести подобно водяной волне. Но как, о боги, такое может быть? Волновое движение кажется коллективным свойством, которое не имеет смысла, когда применяется к отдельным идивидуальным составляющим. Если каждые несколько минут индивидуальные зрители в белом встают и садятся по-отдельности, независимо, волна не возникнет. Более того, интерференция волн, кажется, требует, чтобы волна отсюда пересеклась с волной оттуда. Но как вообще может быть интерференция применима к отдельной, индивидуальной, обособленной части целого? Тем не менее, каким-то образом, как это засвидетельствовано в интерференционных данных на Рис.4.4, даже если индивидуальные электроны являются мельчайшими частицами материи, каждая и любая также обладает волновым характером.
(а) (b) (c)
Рис 4.4 Электроны, выстреливающиеся один за одним в сторону щелей, создают интерференционную картину точка за точкой. На (а) – (с) мы иллюстрируем, как указанная картина формируется с течением времени.
Вероятность и законы физики
Если индивидуальный электрон также и волна, то что именно колеблется? Эрвин Шредингер рассмотрел это в первой гипотезе: возможно, что материал, из которого сделаны электроны, может размазываться в пространстве, и эта размазанная электронная эссенция и колеблется. Частица электрон с этой точки зрения должна быть резким сгущением в электронном тумане. Однако, быстро было понято, что такое предположение не может быть верным, поскольку даже волна резко заостренной формы – подобная гигантской приливной волне – в конечном счете расплывается. И если заостренная электронная волна распространяется, мы можем ожидать найти часть отдельного электрического заряда электрона здесь или часть его массы там. Чего мы никогда не делаем. Если мы локализуем электрон, мы всегда находим всю его массу и весь его заряд сконцентрированными в мельчайшей, подобной точке области. В 1927 году Макс Борн выдвинул другое предположение, которое оказалось решающим этапом, побудившим физику ввести радикально новую область. Он объявил, что волна не есть размазанный электрон, она не есть и что-либо, с чем когда-либо ранее сталкивались в науке. Волна, предположил Борн, есть волна вероятности.
Чтобы понять, что это означает, нарисуем моментальный снимок водяной волны, который показывает области высокой интенсивности (вблизи гребней и впадин) и области низкой интенсивности (вблизи плоских переходных областей между гребнями и впадинами). Чем выше интенсивность, тем больший потенциал имеет водяная волна для оказания силового воздействия на находящийся рядом корабль или прибрежные структуры. Волна вероятности в представлении Борна также имеет области высокой и низкой интенсивности, но значение, которое он приписывал этому виду волны, неожиданное: размер волны в данной точке пространства пропорционален вероятности, что электрон находится в этой точке пространства. Места, гда вероятностная волна велика, это места, где электрон наиболее легко может быть найден. Места, гда вероятностная волна мала, это места, где электрон найти маловероятно. И места, где вероятностная волна равна нулю, это места, где электрон не будет найден.
Рис. 4.5 дает "моментальный снимок" вероятностной волны с отметками, подчеркивающими борновскую вероятностную интерпретацию. Хотя, в отличие от фотографии водяной волны, этот снимок не может в действительности быть сделан камерой. Никто никогда не наблюдал непосредственно вероятностную волну, и традиционные квантовомеханические объяснения говорят, что никто никогда и не будет. Вместо этого мы используем математические уравнения (разработанные Шредингером, Нильсом Бором, Вернером Гейзенбергом, Полем Дираком и другими), чтобы вычислить, на что должна быть похожа волна вероятности в данной ситуации. Затем мы проверяем такие теоретические расчеты путем сравнения их с экспериментальными результатами следующим образом. После расчета искомой вероятностной волны для электрона в данной экспериментальной ситуации, мы выполняем идентичную расчетной ситуации версию эксперимента снова и снова с нуля, каждый раз фиксируя измеренное положение электрона.