Выбрать главу

Вместо этого, согласно Бору и Копенгагенской интерпретации квантовой механики, которую он убедительно отстаивал, до того, как кто-нибудь измерит положение электрона, не имеет смысла даже спрашивать, где он. Он не имеет определенного положения. Вероятностная волна шифрует возможность того, что электрон, когда он будет подходящим образом исследован, будет найден здесь или там, и это в полном смысле слова все, что можно сказать о его положении. Пауза. Электрон имеет определенное положение в обычном интуитивном смысле только в момент, когда мы "смотрим" на него – в момент, когда мы измеряем его положение, – идентифицируя его локализацию с определенностью. Но до (и после) этого мы должны принять, что все, что электрон имеет, это потенциальное положение, описываемое вероятностной волной, которая, как и всякая волна, подвержена интерференционным эффектам. Это не то, что электрон имеет положение и мы не знаем этого положения, пока мы не проведем наше измерение. Точнее, вопреки тому, что вы ожидали, электрон просто не имеет определенного положения перед тем, как измерение проведено.

Это предельно странная реальность. С этой точки зрения, когда мы измеряем положение электрона, мы не измеряем объективное, существующее заранее свойство реальности. Скорее, акт измерения глубоко вмешивается в создание самой реальности, которая измеряется. Перенеся это от электронов на повседневную жизнь, Эйнштейн саркастически заметил: "Вы действительно верите, что Луна не здесь, пока мы не посмотрим на нее?" Адепты квантовой механики отреагировали версией старой байки про дерево, упавшее в лесу: если никто не смотрит на Луну, – если никто не "измеряет ее положение путем разглядывания ее", – то для нас нет способа узнать, там ли она, так что нет смысла и задавать этот вопрос. Эйнштейн нашел это в высшей степени неудовлетворительным. Это было дикое расхождение с его концепцией реальности; он твердо верил, что Луна здесь, смотрит на нее кто-нибудь или нет. Но приверженцы квантовой механики остались при своих убеждениях.

Второй вопрос Эйнштейна, поднятый на Сольвеевской конференции в 1930 году, следовал вплотную за первым. Он описывал гипотетический прибор, который (через хитрую комбинацию линейки, часов и подобного фотографическому затвора), казалось, устанавливал, что частица вроде электрона должна иметь определенные свойства – до того, как их измерят или определят, – что квантовая механика считает невозможным. Детали несущественны, но результат отчасти ироничен. Когда Бор изучил вызов Эйнштейна, он был полностью выбит из колеи – сначала он не увидел изъянов в аргументах Эйнштейна. Еще через день он пришел в норму и полностью опроверг заявления Эйнштейна. А удивительной вещью было то, что ключом к отзыву Бора оказалась ОТО! Бор выяснил, что Эйнштейн упустил из виду свое собственное открытие, что гравитация деформирует время, – так что часы тикают с темпом, зависящим от гравитационного поля, которое они испытывают. Когда это дополнение было включено, Эйнштейн был вынужден согласиться, что его заключения оказываются прямо в русле ортодоксальной квантовой теории.

Хотя его построения были разрушены, Эйнштейн остался глубоко неудовлетворен квантовой механикой. В последующие годы он держал Бора и его коллег на прицеле, выдавая один новый вызов за другим. Его наиболее сильная и долго длившаяся атака была нацелена на нечто, известное как принцип неопределенности, прямое следствие квантовой механики, сформулированный в 1927 году Вернером Гейзенбергом.

Гейзенберг и неопределенность

Принцип неопределенности обеспечивает четкую количественную меру того, насколько тесно вероятность вплетена в ткань квантовой вселенной. Чтобы понять это, представим себе меню фиксированной цены в обычном китайском ресторане. Блюда выстроены в две колонки, А и В, и если, например, вы заказали первое блюдо из колонки А, вы уже не можете заказать первое блюдо из колонки В; если вы заказали второе блюдо из колонки А, вам уже нельзя заказать второе блюдо из колонки В, и так далее. Таким образом, ресторан устанавливает диетический дуализм, кулинарную дополнительность (она, в частности, призвана уберечь вас от заказа набора из наиболее дорогостоящих блюд). По меню фиксированной цены вы можете получить утку по-пекински или лобстера по-кантонски, но не их обоих.

Принцип неопределенности Гейзенберга сходен с этим. Он утверждает, грубо говоря, что физические свойства в микроскопической области (положения частиц, скорости, энергии, угловые моменты и так далее) могут быть разделены на два списка, А и В. И, как открыл Гейзенберг, знание первого свойства из списка А фундаментально подрывает вашу возможность получить знание о первом свойстве из списка В; знание второго свойства из списка А фундаментально подрывает вашу возможность получить знание о втором свойстве из списка В; и так далее. Более того, подобно допустимости блюда, содержащего немного утки по-пекински и немного лобстера по-кантонски, но только в пропорции, которая дает туже самую общую цену, чем более точно ваше знание о свойстве из одного списка, тем менее точно может быть ваше знание о соответствующем свойстве из второго списка. Фундаментальная невозможность одновременно определить все свойства из обоих списков – определить с достоверностью все эти свойства микроскопической области – и есть неопределенность, обнаруживаемая принципом Гейзенберга.