Выбрать главу

Смысл введения спина здесь не в том, чтобы погрязнуть в сложностях физики частиц. Скорее, пример спина частицы ненадолго обеспечит нам простую лабораторию для извлечения чудесных неожиданных ответов на вопрос реальности. А именно, имеет ли частица одновременно определенную величину спина относительно каждой и любой оси, хотя мы никогда не можем узнать его для более чем одной оси в один момент вследствие квантовой неопределенности? Или принцип неопределенности говорит нам что-то другое? Говорит ли он нам, вопреки классическим представлениям о реальности, что частица просто не имеет и не может иметь такие свойства одновременно? Говорит ли он нам, что частица пребывает в состоянии квантового чистилища, не имея определенного спина относительно любой выбранной оси, пока кто-нибудь или что-нибудь не измерит его, побудив его к схлопыванию в положение "смирно" и достижению – с вероятностью, определяемой квантовой теорией, – той или иной определенной величины спина (по или против часовой стрелки) относительно выбранной оси? При изучении этих вопросов, по существу, тех же самых, которые мы задавали в случае положений и скоростей частиц, мы можем использовать спин для исследования природы квантовой реальности (и для получения ответов, которые значительно превосходят по важности частный пример спина). Посмотрим на это.

Как было ясно показано физиком Дэвидом Бомом,[11] аргументы Эйнштейна, Подольского и Розена легко могут быть распространены на вопрос, имеют ли частицы определенные спины относительно любой или всех выбранных осей. Далее излагается, как это происходит. Выберем два детектора, приспособленных для измерения спина входящего электрона, один в левой стороне лаборатории, а второй в правой стороне. Установим для двух электронов режим испускания их "спина к спине" из источника, находящегося посередине между двумя детекторами, так что их спины – еще проще, чем их положения и скорости, как в наших более ранних примерах, – скоррелированы. Детали того, как это происходит, не важны; что важно, так это то, что это можно сделать и, фактически, можно сделать легко. Корреляция может быть устроена так, что если левый и правый детекторы настроены на измерение спинов вдоль оси, располагающейся в одном и том же направлении, они будут получать одинаковые результаты: если детекторы настроены на измерение спина соответственно приходящих к ним электронов относительно вертикальной оси и левый детектор обнаруживает, что спин ориентирован по часовой стрелке, так же будет и в правом детекторе; если детекторы настроены на измерение спина вдоль оси, наклоненной на 60 градусов по часовой стрелке от вертикали, и левый детектор измеряет ориентацию спина против часовой стрелки, так же будет и в правом детекторе; и так далее. Еще раз, в квантовой механике лучшее, что мы можем сделать, это предсказать вероятность, что детекторы найдут ориентацию спина по или против часовой стрелки, но мы можем предсказать со 100 процентной определенностью, что какое бы значение спина не было найдено первым детектором, второй найдет такое же.*

(*)"Чтобы избежать лингвистических сложностей, я описываю электронные спины как полностью скоррелированные, хотя более общепринятым описанием является то, в котором они полностью антикоррелированы: какой бы результат не получил первый детектор, второй покажет противоположный. Для сравнения с традиционным описанием представьте, что я переставил местами на одном из детекторов все метки, отмечающие ориентации по и против часовой стрелки."

вернуться

11. Дэвид Бом находится среди самых творческих умов, которые работали в квантовой механике на протяжении двадцатого века. Он родился в Пенсильвании в 1917 и был студентом Роберта Оппенгеймера в Беркли. Во время преподавания в Принстонском Университете он был вызван в Комитет по расследованию антиамериканской деятельности, но отказался давать показания на слушании дела. Вместо этого, он покинул США, стал профессором Университета Сан-Паоло в Бразилии, затем в Технионе в Израиле и, наконец, в Колледже Беркбека в Университете Лондона. Он жил в Лондоне до своей смерти в 1992.