"Но подожди," – протестует Скалли. – "Это только один пример особой программы: синий, синий, красный. В моем объяснении я предполагала, что коробочки с разными номерами могут и в общем случае будут иметь разные программы."
"В действительности, это не имеет значения. Вывод действует для любых из возможных программ. Смотри, мои рассуждения с синим, синим, красным в качестве программы связаны только с тем фактом, что два цвета в программе одинаковы, так что идентичное заключение следует для любой программы: красный, красный, синий или красный, синий, красный и так далее. Любая программа имеет как минимум два одинаковых цвета: программы, которые на самом деле отличаются, это те, в которых все три цвета одинаковы – красный, красный, красный и синий, синий, синий. Но для коробочек с любой из таких программ мы имеем одинаковый цвет вспышки безотносительно к тому, какую дверку мы открыли, так что общая доля вариантов, в которых мы должны увидеть одинаковые цвета, будет только расти. Итак, если твое объяснение правильно и коробочки действуют в соответствии с программами, – даже с программами, которые меняются от одной коробочки к другой, – мы должны согласиться, что мы увидим одинаковые цвета более чем в 50 процентах случаев."
Таков аргумент. Трудная часть закончилась. Суть в том, что имеется тест для определения, права ли Скалли и действует ли каждая сфера в соответствии с программой, которая однозначно определяет, какой цвет вспыхнет в зависимости от того, какая дверка открыта. Если она и Малдер независимо и случайно выберут, какую из трех дверок на каждой из их коробочек открывать, а затем сравнят увиденные ими цвета – коробочка за следующей коробочкой – они должны найти согласие более чем в 50 процентах коробочек. Если выражаться на языке физики, как это будет сделано в следующей секции, прозрение Малдера есть ничто иное как прорыв Джона Белла.
Подсчет ангела за ангелом
Полученный результат прямо переводится на физическую задачу. Представим, что мы имеем два детектора, один в левой стороне лаборатории, а другой в правой стороне, которые измеряют спин входящих частиц вроде электронов, как в эксперименте, обсуждавшемся в предпоследней секции. Детекторы требуют от вас выбора оси (вертикальной, горизонтальной, идущей вперед-назад или одной из бесчисленных осей, которые лежат между указанными), вдоль которой будет измеряться спин; для простоты исследования представим, что мы имеем фиксированно настраиваемые детекторы, которые позволяют сделать только три выбора для осей. При каждом конкретном проведении эксперимента вы будете находить, что входящий электрон вращается по или против часовой стрелки относительно выбранной вами оси.
Согласно Эйнштейну, Подольскому и Розену каждый входящий электрон обеспечивает детектор, в который он влетает, тем, что можно считать программой: даже если оно скрыто, даже если вы не можете его измерить, ЭПР заявляет, что каждый электрон имеет определенное значение спина – или по или против часовой стрелки – относительно любой и каждой из осей. Отсюда, когда электрон попадает в детектор, электрон четко определяет, можете ли вы измерить его спин как направленный по или против часовой стрелки относительно какой-либо оси, которую вы выбрали. Например, электрон, вращающийся по часовой стрелке относительно каждой из трех осей, обеспечивает программу "по, по, по" часовой стрелке; электрон, который вращается по часовой стрелке относительно первых двух осей и против часовой стрелки относительно третьей, обеспечивает программу "по, по, против" часовой стрелки, и так далее. Чтобы объяснить корреляции между летящими налево и летящими направо электронами, Эйнштейн, Подольский и Розен просто объявили, что каждый из электронов имеет идентичный спин и, таким образом, обеспечивает детекторы, в которые они попадают, одинаковыми программами. Поэтому, если выбраны одинаковые оси для левого и правого детекторов, спиновые детекторы дадут одинаковые результаты.