Выбрать главу

Ведь оставалась «пограничная зона» (экстремальные ситуации, когда массивные объекты обладают микроскопическими размерами), в которой требовалось опираться как на общую теорию относительности, так и на квантовую механику. Два самых известных примера из этой области: центральная область чёрной дыры, где целая звезда сжалась под собственной тяжестью до размеров миниатюрной точки, и Большой взрыв, знаменующий рождение нашей Вселенной, — когда, как предполагается, вся видимая часть Вселенной была сжата до размеров, меньше атомных. Без успешного объединения общей теории относительности и квантовой механики коллапс звёзд и рождение Вселенной навсегда останутся неразгаданными тайнами. Многие учёные предпочитали откладывать решение этих проблем, пока не решены более простые насущные задачи.

Но некоторые исследователи не могли с этим смириться. Конфликт между известными законами означает несостоятельность в попытке ухватить глубокую истину вещей, и этого достаточно, чтобы учёные не могли успокоиться. Но при погружении в эту проблему обнаруживалось, что вода глубока, а течение бурно. Прошло немало времени, но исследователи продвинулись слабо; перспектива выглядела безрадостной. И всё же стойкость тех, кто неизменно придерживался выбранного курса и поддерживал мечту об объединении общей теории относительности и квантовой механики, была вознаграждена. Сейчас по освящённому ими пути физики приближаются к гармоничному слиянию законов большого и малого. И главным претендентом, с чем согласятся многие, является теория суперструн (глава 12).

Как мы увидим, теория суперструн начинается с нового ответа на старый вопрос: каковы мельчайшие неделимые компоненты материи? В течение многих десятилетий общепринятым был следующий ответ: материя состоит из частиц (электронов и кварков), которые можно представлять в качестве неделимых точек, не имеющих ни размера, ни внутренней структуры. Общепринятая теория гласит (и эксперименты подтверждают это), что разнообразные сочетания элементарных компонент порождают протоны, нейтроны и всё многообразие атомов и молекул, составляющих полный набор того, с чем мы только ни сталкиваемся. Теория суперструн говорит другое. Она не отрицает ключевую роль электронов, кварков и других элементарных частиц, обнаруженных в экспериментах, но утверждает, что эти частицы не являются точками. Согласно теории суперструн любая частица представляет собой мельчайшую ниточку или струну энергии, в сотни миллиардов миллиардов раз меньшую размеров атомного ядра (что выходит за пределы доступных нам сейчас возможностей исследования). И подобно тому как струна виолончели может вибрировать с различными частотами, вызывая различные музыкальные тона, так и нити теории суперструн могут вибрировать различным образом. Однако вибрации этих нитей, как утверждает теория суперструн, соответствуют не нотам, а различным свойствам элементарных частиц. Микроскопической струне, вибрирующей одним образом, соответствует масса и электрический заряд электрона; согласно теории суперструн такая вибрационная мода может представлять то, что мы традиционно называем электроном. Мельчайшая струна, вибрирующая другим образом, может иметь свойства, соответствующие кварку, нейтрино или какой-либо другой элементарной частице. Таким образом, в теории суперструн объединяются все виды элементарных частиц, каждая из которых представляет одну из вибрационных мод одной и той же сущности.

Переход от точек к струнам, которые так малы, что выглядят как точки, может показаться не ахти каким революционным изменением. Но этот переход на самом деле существенен. Стартуя со столь скромного начала, теория суперструн объединяет общую теорию относительности и квантовую механику в единую связную теорию, изгоняя пагубные бесконечные вероятности, преследовавшие все ранее предпринимавшиеся попытки объединения. Более того, теория суперструн обладает достаточной широтой, чтобы вплести в единое полотно как все силы природы, так и все частицы материи. Короче говоря, теория суперструн вышла первым кандидатом на единую теорию, о которой грезил Эйнштейн.