Выбрать главу

Если эти утверждения верны, то они знаменуют собой грандиозный шаг вперёд. Но самое поразительное, к чему приводит теория суперструн и что взволновало бы сердце Эйнштейна, заключается в изменении наших представлений о ткани космоса. Как мы увидим, предлагаемое теорией суперструн объединение общей теории относительности и квантовой механики математически осуществимо только в том случае, если мы согласимся на ещё один переворот в наших представлениях о пространстве и времени. Вместо привычных нам трёх пространственных и одного временно́го измерения теория суперструн требует девяти пространственных и одного временно́го измерения. А в самом революционном воплощении теории струн, известном как М-теория, для великого объединения требуется десять пространственных и одно временно́е измерение — космический субстрат, состоящий из одиннадцати пространственно-временных измерений. Тот факт, что мы не видим этих дополнительных измерений, теория суперструн объясняет тем, что до сих пор мы улавливали лишь тонкий срез реальности.

Конечно, неподтверждённость существования дополнительных измерений может также означать и то, что их попросту нет и, значит, теория суперструн неверна. Однако не следует делать столь поспешных выводов. Ещё за десятилетия до возникновения теории суперструн самые смелые учёные, включая Эйнштейна, раздумывали над идеей существования дополнительных пространственных измерений, не видимых нами, а также делали предположения о том, где они могли бы скрываться. Теоретики, работающие над теорией суперструн, значительно развили эти идеи и пришли к выводу, что дополнительные измерения либо свёрнуты до таких крохотных размеров, что ни мы, ни наше оборудование не можем их увидеть (глава 12), либо велики, но невидимы на тех путях, на которых мы сейчас исследуем Вселенную (глава 13). В обоих случаях мы имеем очень далеко идущие последствия. Геометрическая форма микроскопических свёрнутых измерений, воздействуя на вибрационные моды струн, может дать ответ на самые основополагающие вопросы, такие как: почему в нашей Вселенной могут существовать звёзды и планеты? А если дополнительные измерения макроскопические, то, возможно, рядом с нами существуют соседние миры (соседние не в обычном пространстве, а с точки зрения дополнительных измерений), о которых мы до сих пор и не догадывались. Смелая идея существования дополнительных измерений является не просто каким-то теоретическим «журавлём в небе». Возможно, вскоре её удастся проверить. Если дополнительные измерения действительно существуют, то эксперименты на следующем поколении ускорителей элементарных частиц могут привести к таким впечатляющим результатам, как синтез микроскопических чёрных дыр или открытие целого семейства новых частиц (глава 13). Эти и другие поразительные результаты могут послужить первым доказательством существования других измерений, помимо видимых нами, и подвести нас на шаг ближе к утверждению теории суперструн в качестве искомой единой теории.

Если теория суперструн окажется верной, то мы должны будем признать, что известная нам реальность является лишь тонким шифоном, драпирующим плотную и богато текстурированную ткань космической реальности. Вопреки заявлению Камю, определение числа пространственных измерений (и, в частности, открытие, что их не только три) окажется чем-то гораздо бо́льшим, чем незначительной деталью. Открытие дополнительных измерений покажет нам, что весь наш человеческий опыт прошёл мимо самого основополагающего и существенного аспекта устройства Вселенной.

Реальность прошлого и будущего

Исследователи оптимистичны в том, что в лице теории суперструн они наконец-то обретут конструкцию, которая не сломается ни при каких условиях, сколь бы экстремальными они ни были, и позволит нам когда-нибудь узнать, что происходило в самый момент зарождения известной нам Вселенной. К настоящему времени ещё никто не приобрёл достаточной сноровки, чтобы напрямую применить эту теорию к описанию Большого взрыва, но изучение космологических явлений с помощью теории суперструн стало одним из самых приоритетных направлений современных исследований. За последние несколько лет в рамках крупных исследовательских проектов на базе теории суперструн возникли новые космологические концепции (глава 13), предложены новые способы проверки теории суперструн с помощью астрофизических наблюдений, а также появились первые догадки по поводу того, какую роль теория суперструн может играть в объяснении стрелы времени.