Мах и смысл пространства
Когда я был подростком, во время прогулок по улицам Манхэттена мы с отцом обычно играли в такую игру. Один из нас незаметно останавливал свой взгляд на чём-то — проезжающем автобусе, голубе, севшем на подоконник, человеке, выронившем монету, — и описывал, как происходящее видится с необычной точки зрения колеса автобуса, летящего голубя или падающей монеты. Задача состояла в том, чтобы по загадочному описанию типа «Я передвигаюсь по тёмной цилиндрической поверхности, окружённой низкими неровными стенами, а с неба спускается огромный пучок толстых белых завитков» догадаться, что это точка зрения муравья, ползущего по хот-догу, на который уличный продавец кладёт гарнир из квашеной капусты. Хотя мы перестали играть в эту игру задолго до того, как я начал изучать физику, эта игра, по крайней мере отчасти, была виновна в том, что я испытал сильную неудовлетворённость, когда встретился с законами Ньютона.
Игра поощряла видение мира с различных точек зрения и подчёркивала, что какая-то точка зрения столь же законна, как и любая другая. Но, согласно Ньютону, хотя вы, несомненно, вольны выбирать любую точку зрения на мир, разные точки зрения не являются одинаково хорошо обоснованными. С точки зрения муравья, сидящего на коньке фигуриста, вращаются лёд и каток; с точки зрения зрителя с трибуны — вращается фигурист. Эти две разные точки зрения выглядят совершенно равноправными, имеющими под собой равное основание и устанавливающими симметричную связь, в которой всё одинаково вращается по отношению друг к другу. И всё же, согласно Ньютону, одна из этих точек зрения более правильна, чем другая, так как если на самом деле вращается фигурист, то его руки будет тянуть в разные стороны, тогда как если на самом деле вращается каток, то его руки никуда тянуть не будет. Принятие абсолютного ньютоновского пространства означает принятие концепции абсолютного ускорения и, в частности, принятие совершенно точного ответа на вопрос, кто или что на самом деле вращается. Я пытался понять, как это может быть верным. Все книги и все учителя, к которым я обращался, соглашались, что при рассмотрении движения с постоянной скоростью имеет смысл только относительное движение; так почему же, гадал я, ускоренное движение так отличается? Почему бы относительному ускорению, как и относительной скорости, не быть единственно значимой вещью при рассмотрении движения с переменной скоростью? Существование абсолютного пространства говорило об обратном, но мне это казалось очень странным.
Гораздо позже я узнал, что в последние несколько столетий многие физики и философы — иногда шумно, иногда тихо — бились над тем же самым вопросом. Хотя казалось, ньютоновское ведро явно указывает на то, что именно абсолютное пространство определяет по-настоящему законную точку зрения (если что-то или кто-то вращается по отношению к абсолютному пространству, тогда это что-то или кто-то на самом деле вращается; в противном случае — нет), такое представление не удовлетворяло многих из тех, кто размышлял над этими вопросами. Помимо интуитивного ощущения того, что ни одна точка зрения не может быть «более верной», чем другая, и помимо в высшей степени здравого предположения Лейбница, что имеет смысл только относительное движение материальных объектов, концепция абсолютного пространства озадачивала многих тем, что это абсолютное пространство позволяет нам распознавать истинное ускоренное движение, как в примере с ведром, тогда как оно не даёт нам способа распознавать истинное движение с постоянной скоростью. В конце концов, если абсолютное пространство действительно существует, то оно должно давать точку отсчёта для распознавания любого движения, не только ускоренного. Если абсолютное пространство действительно существует, то почему оно не даёт способа определения положения в абсолютном смысле, так, чтобы не требовалось использовать описание нашего положения относительно других материальных тел, определяющих систему отсчёта? И если абсолютное пространство действительно существует, то как получается, что оно может влиять на нас (например, растягивая руки в стороны при вращении), а мы на него не можем?