Но вот в чём проблема. Уравнения Максвелла не разрешают свету быть покоящимся — выглядеть так, как будто он неподвижен. И, конечно, никому и никогда не удавалось взять в руки неподвижный комок света. «Так что же делать с этим очевидным парадоксом?» — спрашивал себя Эйнштейн, будучи подростком.
Десять лет спустя Эйнштейн дал миру ответ на этот вопрос в виде своей специальной теории относительности. Было множество дебатов, касающихся интеллектуальных корней открытия Эйнштейна, но решающую роль, несомненно, сыграла его непоколебимая вера в простоту решения. Эйнштейн был осведомлён по крайней мере о нескольких экспериментах, в которых не удалось получить свидетельства в пользу существования эфира{27}. Так к чему же плясать вокруг эфира, пытаясь отыскать недочёты экспериментов? Вместо этого, предложил Эйнштейн, будем исходить из простого утверждения: эксперименты не смогли обнаружить эфир, потому что эфир не существует. И поскольку уравнения Максвелла, описывая распространение света (электромагнитных волн), не предполагают никакой светоносной среды, то теория и эксперимент приходят к одному выводу: свету, в отличие от волн другого рода, не требуется среда для своего распространения. Свет — одинокий путешественник. Свет может распространяться в пустом пространстве.
Но что же тогда делать с уравнениями Максвелла, дающими скорость света 300 тыс. км/с? Если нет эфира в качестве стандарта состояния покоя, то по отношению к чему получается такая скорость? Эйнштейн опять порвал с традицией и ответил с предельной простотой. Если теория Максвелла не выделяет какого-либо стандарта покоя, то проще всего предположить, что он и не требуется. Скорость света, — декларировал Эйнштейн, — равна 300 тыс. км/с относительно всего.
Это действительно простое утверждение; оно прекрасно вписывается в максиму, часто приписываемую Эйнштейну: «Сделайте всё настолько просто, насколько это возможно, но не проще». Проблема в том, что это утверждение тоже выглядит безумным. Если вы бежите за удаляющимся лучом света, то здравый смысл говорит вам, что по отношению к вам свет должен удаляться со скоростью, меньшей 300 тыс. км/с. Если же вы бежите навстречу приближающемуся лучу света, то здравый смысл говорит вам, что по отношению к вам свет должен приближаться со скоростью, большей 300 тыс. км/с. В течение всей своей жизни Эйнштейн бросал вызов общепринятому здравому смыслу, и этот раз не явился исключением. Он с уверенностью настаивал, что независимо от того, насколько быстро вы приближаетесь к лучу света или удаляетесь от него, скорость луча с вашей точки зрения всегда будет составлять 300 тыс. км/с, не больше, не меньше, — независимо ни от чего. Это определённо разрешало парадокс, поразивший Эйнштейна, когда он был ещё подростком: теория Максвелла не позволяет свету находиться в покое, потому что свет никогда не покоится; независимо от того, двигаетесь вы сами или покоитесь, свет всегда распространяется по отношению к вам с неизменной скоростью 300 тыс. км/с. Но тут же возникает естественный вопрос: как свет может вести себя таким странным образом?
Задумаемся немного о скорости. Скорость вычисляется так: пройдённое расстояние делится на затраченное время. То есть это мера длины (пройдённое расстояние), делённая на меру времени (затраченное время). Ещё со времён Ньютона пространство считалось абсолютным, существующим «безотносительно к чему-либо внешнему». Поэтому и измерения пространства и расстояний тоже должны быть абсолютными: кто бы ни проводил измерение расстояния между двумя объектами, в результате должна получаться одна и та же величина (если, конечно, измерения проводятся достаточно тщательно). И, хотя мы до сих пор и не говорили об этом прямо, то же самое Ньютон утверждал и по отношению к времени. Его описание времени в «Началах» вторит его описанию пространства: «время само по себе и по самой своей сущности, без всякого отношения к чему-либо внешнему, протекает равномерно»[28]. Иными словами, согласно Ньютону, существует универсальная, абсолютная концепция времени, которая применима всегда и везде. В ньютоновской Вселенной получается так: кто бы ни измерял время, прошедшее между двумя событиями, в результате должна получаться одна и та же величина (если измерения проводятся достаточно точно).
{27}
Есть некоторое разногласие по поводу того, какую роль сыграли эти эксперименты при создании специальной теории относительности. В биографии Эйнштейна (см.: