По отношению к чему вращается ведро в совершенно пустой Вселенной? Согласно Ньютону — по отношению к абсолютному пространству. Согласно Маху, в этом случае даже бессмысленно говорить о вращении ведра. Согласно специальной теории относительности Эйнштейна, ведро вращается по отношению к абсолютному пространству-времени.
Чтобы понять это, давайте снова взглянем на проекты благоустройства Спрингфилда. Вспомним, что на планах Мардж и Лизы как супермаркет «На скорую руку», так и атомная электростанция имеют разные адреса из-за того, что сети улиц и авеню на этих планах повёрнуты по отношению друг к другу. Но несмотря на разные сети улиц и авеню, кое-что на этих планах совпадает. Например, если для удобства работников атомной электростанции проложить асфальтированную дорожку прямо от их места работы к супермаркету «На скорую руку», то Мардж и Лиза не придут к согласию о том, какие улицы и авеню пересечёт эта дорожка, как видно по рис. 3.6. Но они наверняка согласятся по поводу формы дорожки: в обоих случаях дорожка будет отрезком прямой линии. Геометрическая форма дорожки не зависит от ориентации сети улиц/авеню.
Рис. 3.6. Независимо от ориентации сети улиц/авеню все согласятся с тем, что проложенная дорожка является отрезком прямой линии
Эйнштейн понял, что нечто подобное справедливо по отношению к пространству-времени. Даже если два наблюдателя, двигающиеся друг относительно друга, «нарезают» пространство-время различными способами, кое в чём они всё же согласятся. В качестве первого примера рассмотрим траекторию движения в виде прямой линии, но не просто в пространстве, а в пространстве-времени. Хотя такая траектория менее привычна из-за введения времени, но после минутного размышления становится понятен её смысл. Чтобы траектория движения объекта в пространстве-времени была прямой линией, этот объект должен двигаться не только по прямой линии в пространстве, но и равномерно по времени; иными словами, величина и направление скорости его движения должны быть неизменными, и, значит, объект должен двигаться с постоянной скоростью. Так вот, хотя разные наблюдатели «нарезают» блок пространства-времени под разными углами и поэтому не согласятся в том, за какое время пройден тот или иной участок траектории или какова его длина, но они, подобно Мардж и Лизе, согласятся в том, что эта траектория является прямой линией. Подобно тому как геометрическая форма дорожки от атомной электростанции к супермаркету «На скорую руку» не зависит от ориентации сети улиц/авеню, так и геометрические формы траекторий в пространстве-времени не зависят от способа организации временны́х слоёв{43}.
Это утверждение простое, но очень важное, поскольку благодаря ему специальная теория относительности даёт абсолютный критерий (с которым согласятся все наблюдатели, с какой бы постоянной скоростью они бы ни двигались) для определения ускоренного движения. Если траектория объекта в пространстве-времени является прямой линией, как у мирно покоящегося космонавта на рис. 3.7а, то объект не ускоряется. Если же траектория объекта в пространстве-времени описывает другую линию, отличную от прямой, то объект ускоряется. Например, если космонавт включит свой реактивный ранец и начнёт летать кругами, как на рис. 3.7б, или же понесётся в открытый космос, как на рис. 3.7в, то его траектория в пространстве-времени будет кривой линией — это непременный знак ускорения. Таким образом, мы поняли, что геометрические формы траекторий в пространстве-времени дают абсолютный критерий для определения ускоренного движения. Пространство-время, но не пространство в отдельности, предоставляет такой критерий.
Рис. 3.7. Траектории трёх космонавтов в пространстве-времени. Космонавт (а) не ускоряется и поэтому описывает прямую линию в пространстве-времени. Космонавт (б) летает кругами, что отображается спиралью в пространстве-времени. Космонавт (в) ускоряется в открытый космос, поэтому его траектория в пространстве пошла по другой кривой линии
В этом смысле, следовательно, специальная теория относительности говорит нам, что само пространство-время является окончательным судьёй для определения ускоренного движения. Пространство-время предоставляет подмостки, по отношению к которым можно говорить об ускоренном движении объектов (например, о вращении ведра) в совершенно пустой Вселенной. Наш маятник снова качнулся: от реляционизма Лейбница к абсолютизму Ньютона, затем к реляционизму Маха и теперь назад к Эйнштейну, который снова показал, что арена реальности, понимаемая, однако, как пространство-время, а не только как пространство, достаточна в качестве чего-то, предоставляющего окончательный критерий движения{44}.
{43}
Для математически подкованного читателя это утверждение можно строго сформулировать следующим образом: геодезические линии пространства-времени Минковского (пути экстремальной длины между двумя точками пространства-времени) являются геометрическим объектами, не зависящими от выбора координат или системы отсчёта. Эти линии являются внутренними, абсолютными геометрическими свойствами пространства-времени. Точнее говоря, в стандартной метрике Минковского геодезические (времениподобные) линии являются прямыми (составляющими с осью времени угол меньше 45°, поскольку скорость материального объекта не может превышать скорость света).
{44}
Есть ещё кое-что важное, с чем согласятся все наблюдатели, независимо от скорости их движения. Это подразумевается в нашем описании пространства-времени, но стоит сказать об этом прямо! Если одно событие является причиной другого (я кинул камень в окно, и окно разбилось), то все наблюдатели согласятся с тем, что причина стояла