Рис. 3.5. Подобно тому как буханку хлеба можно нарезать под различными углами, так и «срезы по времени» блока пространства-времени идут под разными углами в зависимости от относительной скорости наблюдателя. Чем больше эта скорость, тем больше угол (максимум 45° при достижении скорости света)
Ведро с точки зрения специальной теории относительности
Относительность пространства и времени требует существенных изменений в нашем мышлении. Однако здесь есть один важный момент, упомянутый ранее и проиллюстрированный на примере буханки хлеба, но зачастую упускаемый: не всё относительно в специальной теории относительности. Даже если мы с вами захотим вообразить нарезку буханки хлеба разными способами, всё же есть кое-что, с чем мы полностью согласимся: буханка в целом одна и та же. Хотя кусочки хлеба будут отличаться, но если мы составим их вместе, то получим одну и ту же буханку, как бы мы её ни нарезали. Да и как могло бы быть иначе? Ведь мы нарезали одну и ту же буханку.
Аналогично, все «срезы» пространства в последовательные моменты времени (см. рис. 3.4) в совокупности дают один и тот же блок пространства-времени, с какой бы скоростью ни двигался наблюдатель. Различные наблюдатели «нарезают» блок пространства-времени различными способами, но сам блок, подобно буханке хлеба, имеет независимое существование. Таким образом, хотя Ньютон определённо был неправ, его утверждение о том, что существует нечто абсолютное, с чем согласится любой наблюдатель, не полностью развенчано в специальной теории относительности. Абсолютное пространство не существует. Абсолютное время не существует. Но, согласно специальной теории относительности, абсолютное пространство-время в действительности существует. Имея это наблюдение, давайте снова вернёмся к ньютоновскому ведру.
По отношению к чему вращается ведро в совершенно пустой Вселенной? Согласно Ньютону — по отношению к абсолютному пространству. Согласно Маху, в этом случае даже бессмысленно говорить о вращении ведра. Согласно специальной теории относительности Эйнштейна, ведро вращается по отношению к абсолютному пространству-времени.
Чтобы понять это, давайте снова взглянем на проекты благоустройства Спрингфилда. Вспомним, что на планах Мардж и Лизы как супермаркет «На скорую руку», так и атомная электростанция имеют разные адреса из-за того, что сети улиц и авеню на этих планах повёрнуты по отношению друг к другу. Но несмотря на разные сети улиц и авеню, кое-что на этих планах совпадает. Например, если для удобства работников атомной электростанции проложить асфальтированную дорожку прямо от их места работы к супермаркету «На скорую руку», то Мардж и Лиза не придут к согласию о том, какие улицы и авеню пересечёт эта дорожка, как видно по рис. 3.6. Но они наверняка согласятся по поводу формы дорожки: в обоих случаях дорожка будет отрезком прямой линии. Геометрическая форма дорожки не зависит от ориентации сети улиц/авеню.
Рис. 3.6. Независимо от ориентации сети улиц/авеню все согласятся с тем, что проложенная дорожка является отрезком прямой линии
Эйнштейн понял, что нечто подобное справедливо по отношению к пространству-времени. Даже если два наблюдателя, двигающиеся друг относительно друга, «нарезают» пространство-время различными способами, кое в чём они всё же согласятся. В качестве первого примера рассмотрим траекторию движения в виде прямой линии, но не просто в пространстве, а в пространстве-времени. Хотя такая траектория менее привычна из-за введения времени, но после минутного размышления становится понятен её смысл. Чтобы траектория движения объекта в пространстве-времени была прямой линией, этот объект должен двигаться не только по прямой линии в пространстве, но и равномерно по времени; иными словами, величина и направление скорости его движения должны быть неизменными, и, значит, объект должен двигаться с постоянной скоростью. Так вот, хотя разные наблюдатели «нарезают» блок пространства-времени под разными углами и поэтому не согласятся в том, за какое время пройден тот или иной участок траектории или какова его длина, но они, подобно Мардж и Лизе, согласятся в том, что эта траектория является прямой линией. Подобно тому как геометрическая форма дорожки от атомной электростанции к супермаркету «На скорую руку» не зависит от ориентации сети улиц/авеню, так и геометрические формы траекторий в пространстве-времени не зависят от способа организации временны́х слоёв.{26}