Таким образом, выполнив измерение, я переведу систему в одно из этих четырёх состояний. После того как я сообщу Николасу (обычными средствами), какое состояние я обнаружил, он будет знать, что сделать с фотоном 3, чтобы воспроизвести начальное состояние фотона 1. Например, если я обнаружу состояние
{293}
В действительности, математически подготовленный читатель заметит, что нетрудно доказать так называемую теорему о невозможности клонирования квантовых состояний. Предположим, что у нас есть унитарный оператор клонирования U, «удваивающий» любое квантовое состояние системы
Тогда результатом применения U к
{294}
Как в разработке теории, так и в экспериментальной реализации квантовой телепортации приняли участие многие исследователи. Назовём ещё некоторых: исследования Санду Попеску, работавшего в то время в Кембриджском университете, сыграли важную роль в экспериментах, проведённых в Риме, а группа Джеффри Кимбла из Калифорнийского технологического института впервые осуществила телепортацию непрерывных характеристик квантового состояния.
(обратно)
[295]
Квантовое состояние совокупности частиц (в отличие от индивидуальных частиц) отражает также связи между всеми частицами этой совокупности. Таким образом, точно воспроизводя квантовое состояние частиц, составляющих «ДеЛориан», мы гарантируем, что все они находятся в той же связи друг с другом; единственная разница будет состоять в том, что их положение в целом будет смещено из Нью-Йорка в Лондон.
(обратно)
{296}
О чрезвычайно интересных достижениях в области запутывания многочастичных систем рассказано, например, в статье: Julsgaard В., Kozhekin A., and Polzik Е. S. Experimental long-lived entanglement of two macroscopic objects. Nature. 2001. Sept. № 413. P. 400–403.
(обратно)
{297}
Одной из наиболее захватывающих и развивающихся областей науки, использующей запутывание квантовых состояний и квантовую телепортацию, являются квантовые вычисления. Квантовые вычисления на популярном уровне хорошо изложены в недавних книгах: Siegfried Т. The Bit and the Pendulum. New York: John Wiley, 2000; Johnson G. A Shortcut Through Time. New York: Knopf, 2003.
(обратно)
{298}
Одним из следствий эффектов замедления времени с увеличением скорости, который мы не обсуждали в главе 3, но который будет играть свою роль в данной главе, является так называемый парадокс близнецов. Дело вот в чём: если я и вы двигаемся друг относительно друга с постоянной скоростью, я буду думать, что я не двигаюсь и, следовательно, ваши часы идут медленнее моих. Но вы с тем же правом можете заявить, что это вы неподвижны, а двигаюсь я, и, значит, мои часы идут медленнее ваших. Может показаться парадоксальным, что каждый из нас думает, что часы другого идут медленнее, но этот парадокс легко разрешим. При относительном движении с постоянной скоростью наши часы будут всё удаляться друг от друга и, следовательно, у нас не будет никакой возможности для непосредственного сравнения показаний часов, чтобы определить, какие из них «на самом деле» идут медленнее. А все прочие косвенные сравнения показаний часов (например, с помощью сотовой связи) требуют некоторого времени и происходят на некотором пространственном отдалении, что непременно вводит в игру усложнения, связанные с различным представлением разных наблюдателей о том, что происходит «сейчас», о чём мы говорили в главах 3 и 5. Я не хочу вдаваться здесь во все подробности, но если учесть все релятивистские поправки, то не будет противоречия в том, что каждый из нас заявляет, что часы другого идут медленнее (полное, технически точное, но достаточно элементарное обсуждение этого парадокса приводится, например, в книге: Тейлор Э. Ф., Уилер Дж. А. Физика пространства-времени. М.: Мир, 1971). Ситуация становится более загадочной, если, к примеру, вы замедляетесь, останавливаетесь, поворачиваетесь и возвращаетесь ко мне, так что мы сможем напрямую сравнить показания наших часов, устраняя усложнения, связанные с различными представлениями о «сейчас». Когда мы встретимся, чьи часы будут показывать меньшее время? Это так называемый парадокс близнецов: если мы с вами близнецы, то кто из нас при встрече будет выглядеть старше или же мы будем выглядеть одинаково? Ответ такой: мои часы будут показывать большее время и, следовательно, я буду выглядеть старше. Есть множество способов объяснить, почему это так, но проще всего заметить, что когда вы меняете скорость и испытываете ускорение, теряется симметрия между нами — вы можете определённо сказать, что это вы двигаетесь (поскольку, к примеру, вы это чувствуете — или, вспоминая обсуждение в главе 3, в отличие от меня, ваше путешествие по пространству-времени происходит не по прямой линии) и, значит, ваши часы идут медленнее моих. Для вас пройдёт меньше времени, чем для меня.
(обратно)