Габор придумал установку для записи на специальной плёнке как интенсивности, так и фазовой информации света, рассеянного объектом. Переводя на современный язык, его подход был сродни экспериментальной установке на рис. 7.1, за исключением того, что один из двух лазерных лучей отражался объектом, расположенным на его пути к экрану. Если экран покрыт плёнкой, содержащей подходящий эмульсионный слой, то на плёнке запишется интерференционная картина (в виде мельчайших линий) наложения двух лучей, один из которых беспрепятственно попал на экран, а другой был рассеян объектом. Интерференционная картина содержит информацию как об интенсивности отражённого света, так и о сдвиге фаз между двумя световыми лучами. Изобретение Габора внесло существенный вклад в научные исследования, позволив значительно усовершенствовать широкий круг измерительных методов. Но для широкой публики самым выдающимся достижением стала разработка художественных и промышленных голограмм.
Обычные фотографии выглядят плоскими из-за записи только интенсивности света. Для передачи глубины нужна фазовая информация. Причина в том, что по мере движения световой волны её амплитуда меняется от минимума к максимуму и обратно, так что фазовая информация — или, точнее, информация о сдвиге фаз между световыми лучами, отражёнными соседними частями объекта, — запечатлевает разницу расстояний, проходимых световыми лучами от разных частей объекта. Например, если вы смотрите на кошку, сидящую прямо перед вами, то её глаза находятся от вас чуть дальше, чем её нос, и эта разница отражается в сдвиге фаз между световыми лучами, отражёнными от разных частей её мордочки. Освещая затем голограмму лазерным светом, мы задействуем фазовую информацию, записанную на голограмме, и тем самым добавляем глубину к изображению. Мы все видели результаты: потрясающие трёхмерные изображения, порождаемые двумерным куском пластика. Хотя заметим, что наши глаза не используют эту фазовую информацию для передачи глубины картины. Вместо этого они используют параллакс: небольшая разница в углах, под которыми свет от одной и той же точки доходит до правого и левого глаза, даёт нужную информацию, которую мозг затем переводит в расстояние до этой точки. Вот почему, к примеру, если человек слепнет на один глаз (или просто прикрывает его), то ощущение глубины ухудшается.
(обратно)
[317]
Если вам не хочется переписывать Платона, то модель мира на бране дает голографическую версию мира, в которой тени вновь занимают надлежащее место. Представим, что мы живём на 3-бране, окружающей четырёхмерную область (подобно тому как двумерная кожица яблока окружает его трёхмерную внутренность). В такой модели мира голографический принцип скажет, что наши трёхмерные ощущения являются тенями четырёхмерной физики, происходящей в области, окружённой нашей браной.
(обратно)
{318}
Для математически подкованного читателя это утверждение можно сформулировать следующим образом: луч света (или, в общем смысле, любая безмассовая частица), испущенный из любой точки внутри антидеситтеровского пространства, достигает пространственной бесконечности и возвращается назад за конечное время.
(обратно)
{319}
Для математически подкованного читателя сообщаем, что Малдасена работал в контексте AdS5 × S5, и теория на границе возникала из границы AdS5.
(обратно)
{320}
Это утверждение скорее относится к социологии, чем к физике. Теория струн выросла на традициях физики элементарных частиц, тогда как теория петлевой квантовой гравитации — на традициях общей теории относительности. Однако важно отметить, что на сегодняшний день только теория струн может давать результаты, успешно предсказанные общей теорией относительности, поскольку только теория струн убедительно сводится на больших масштабах к общей теории относительности. Теория петлевой квантовой гравитации хорошо понятна в квантовой области, но оказалось трудным распространить её на область крупномасштабных явлений.
(обратно)
{321}
Точнее говоря, как об этом говорилось в главе 13 книги «Элегантная Вселенная», энтропия чёрной дыры была подсчитана ещё в 1970-х гг. в работах Бекенштейна и Хокинга. Однако эти учёные использовали довольно непрямой подход и никогда не считали количество микроскопических перестановок — как в главе 6 — для объяснения найденной ими энтропии. В середине 1990-х гг. этот пробел был заполнен в работе Эндрю Строминджера и Кумруна Вафы, нашедших связь между чёрными дырами и определёнными конфигурациями бран теории струн / M-теории. Грубо говоря, им удалось установить, что определённые особые чёрные дыры допускают ровно такое же количество перестановок образующих их компонентов (чем бы ни были эти компоненты), как и определённые, специально подобранные комбинации бран. Когда они подсчитали количество соответствующих всевозможных перестановок бран (и взяли от него логарифм), то получили тот же ответ, что и найденный годами раньше: энтропия чёрной дыры равна площади горизонта событий чёрной дыры, выраженной в планковских единицах и поделённой на 4. В теории петлевой квантовой гравитации исследователям также удалось показать, что энтропия чёрной дыры пропорциональна площади поверхности её горизонта событий, но точный ответ (площадь поверхности, выраженная в планковских единицах и поделённая на 4) оказалось не так-то легко получить. Если должным образом подобрать особый параметр, называемый параметром Иммирзи, тогда с помощью математического аппарата теории петлевой квантовой гравитации можно действительно получить точный правильный ответ, но пока ещё нет всеми принятого фундаментального объяснения в рамках самой теории, почему величина этого параметра должна быть именно такой.
(обратно)