Выбрать главу

Теперь можно утверждать, что «час» и «сутки» имеют регулярную периодичность, т. е. отмечают последовательные равные интервалы времени, хотя нами и не доказано, что каждый из процессов действительно периодичен. Нас могут спросить: а вдруг есть некое всемогущее существо, которое замедляет течение песка ночью и убыстряет днем? Наш эксперимент, конечно, не может дать ответа на такого рода вопросы. Очевидно лишь то, что периодичность одного процесса согласуется с периодичностью другого. Поэтому при определении понятия «время» мы просто будем исходить из повторения некоторых очевидно периодических событий.

§ 3. Короткие времена

Заметим, что в процессе проверки «воспроизводимости» дней мы нашли метод измерения части дня, т. е. метод измерения меньших промежутков времени. Нельзя ли этот процесс продолжить и научиться измерять еще меньшие промежутки времени?

Галилей предположил, что каждый маятник отклоняется и возвращается назад за равные интервалы времени (если отклонения невелики). Сравнение числа отклонений маятника с «часом» показывает, что это действительно так. Таким способом можно измерять доли «часа». Если для подсчета числа колебаний маятника применить механический счетчик, то мы получим маятниковые часы наших дедов.

Договоримся теперь, что если маятник отклонится 3600 раз в час (и если в сутках 24 часа), то период колебаний такого маятника мы назовем «секундой». Итак, нашу первоначальную единицу «сутки» мы разделили приблизительно на 105 частей. Используя тот же принцип сравнения, можно и секунду разделить на все меньшие и меньшие части. Для этого оказывается более удобным использовать не простой механический, а электрический маятник, называемый осциллятором, период колебаний которого может быть очень малым. В таких электронных осцилляторах роль маятника выполняет электрический ток, который течет то в одном, то в другом направлении.

Давайте представим себе целый ряд таких осцилляторов, что период колебаний каждого последующего в десять раз меньше предыдущего. Это можно проверить путем простого подсчета числа колебаний последующего осциллятора за одно колебание предыдущего; только теперь этот подсчет трудно провести без устройства, расширяющего возможности наблюдения, своеобразного «микроскопа времени». Таким устройством может служить электронно-лучевой осциллограф, на светящемся экране которого строится график зависимости электрического тока (или напряжения) от времени.

Соединяя осциллограф сначала с одним осциллятором, а затем с другим, мы получим на экране графики зависимости тока от времени в одном и в другом осцилляторе (фиг. 5.2).

Фиг. 5.2. Две осциллограммы, снятые с экрана осциллографа. а — при осциллографе, подключенном к одному осциллятору; б — при осциллографе, подключенном к осциллятору, период колебаний которого в десять раз меньше первого.

А теперь нетрудно подсчитать, какое число периодов «быстрого» осциллятора укладывается в одном периоде «медленного».

Современная электроника позволяет создавать осцилляторы с периодами 10-12сек, которые выверяются (калибруются) методом сравнения, подобным вышеописанному, на стандартную единицу времени — секунду. В последние несколько лет в связи с изобретением и усовершенствованием «лазера», или усилителя света, появилась возможность сделать осцилляторы с еще более коротким периодом. Пока еще невозможно калибровать их тем же методом, однако, несомненно, что и это скоро будет достигнуто.

Можно измерять промежутки времени, гораздо более короткие, чем 10-12сек, но для этого используются совершенно другие методы. В сущности используется другое определение понятия «время». Один из таких методов — это измерение расстояния между двумя событиями, происходящими на движущемся объекте. Например, пусть в движущемся автомобиле сначала включают, а затем выключают фары. Если известно, где были включены и выключены фары и какова была скорость автомобиля, то можно вычислить, сколько времени они горели. Для этого нужно расстояние, на протяжении которого горели фары, разделить на скорость автомобиля.

Именно таким методом в последние годы измерялось время жизни π0-мезона. При наблюдении в микроскоп мельчайших следов, оставленных на фотоэмульсии, в которой родился π0-мезон, было обнаружено следующее: π0-мезон, двигаясь со скоростью, близкой к скорости света, прежде чем распасться, проходит в среднем расстояние около 10-7м. Таким образом, время жизни π0-мезона составляет всего лишь 10-16сек! Необходимо подчеркнуть, что здесь было использовано несколько другое определение понятия «время», но, поскольку оно не приводит к каким-либо противоречиям, можно быть уверенным в том, что эти определения в достаточной мере эквивалентны друг другу.