Выбрать главу

Итак, мы обнаружили, что нелинейная реакция дает несколько эффектов: выпрямление, возникновение гармоник и модуляцию, т. е. возникновение компонент с суммой и разностью частот.

Обратите внимание, что все эти эффекты пропорциональны не только коэффициенту нелинейности ε, но и произведению амплитуд: либо A2, либо В2, либо АВ. Поэтому мы ожидаем, что они будут более важны для сильных сигналов, чем для слабых.

Описанные нами эффекты находят множество практических приложений. Во-первых, что касается звука, то, как полагают, наше ухо — нелинейный аппарат. Такое представление возникло из того факта, что, даже когда звук содержит только чистые тоны, при большой громкости возникает ощущение, что мы слышим высшие гармоники, а также сумму и разность частот.

Аппараты, используемые обычно в звуковоспроизводящих устройствах,— усилители, громкоговорители и т. д.— всегда имеют какие-то нелинейности. Они искажают звук, порождая гармоники, которых вначале не было. Эти новые гармоники воспринимаются ухом и, несомненно, нежелательны. Именно по этой причине высокочастотная аппаратура должна быть как можно «более линейной». (Почему нелинейность нашего собственного уха не «неприятна» и откуда нам знать, что нелинейность «сидит» в громкоговорителе, а не в нашем ухе,— не ясно!)

Однако в некоторых случаях нелинейность совершенно необходима, и в некоторых частях радиопередающих и принимающих устройств она намеренно делается побольше. При радиопередачах с помощью амплитудной модуляции сигналы от «голоса» (частоты порядка нескольких килогерц) комбинируются с «несущим сигналом» (с частотой порядка нескольких мегагерц) в нелинейной цепи, которая называется модулятором. При этом получаются модулированные колебания, которые затем излучаются в эфир. В приемнике сигнал снова попадает в нелинейный контур, который складывает и вычитает частоты модулированного сигнала, выделяя снова звуковой сигнал.

Когда мы разбирали вопрос прохождения света через вещество, мы предполагали, что вынужденные колебания зарядов пропорциональны электрическому полю света, т. е. мы брали линейную реакцию. Это действительно очень хорошее приближение. Только в последние несколько лет были построены источники света (лазеры), которые дают интенсивность, достаточную для наблюдения нелинейных эффектов. Теперь можно создавать гармоники световых частот. Если пропускать через кусок стекла сильный красный свет, то выходит он оттуда с небольшим добавком второй гармоники — голубого света!

Глава 51 ВОЛНЫ

§ 1. Волна от движущегося предмета

Мы закончили количественный анализ волн, но посвятим еще одну дополнительную главу некоторым качественным оценкам различных явлений, связанных с волнами; для подробного анализа они слишком сложны. Волнами мы занимаемся уже на протяжении нескольких глав, поэтому предмет настоящей главы было бы вернее назвать «некоторые из более сложных явлений, связанных с волнами».

Первым объектом нашего обсуждения будет эффект, производимый источником волн, движущимся со скоростью, превышающей скорость распространения волн, т. е. быстрее их фазовой скорости. Рассмотрим сначала волны, которые, подобно звуку или свету, имеют определенную постоянную скорость. Если источник звука движется со сверхзвуковой скоростью, то произойдет нечто вроде следующего. Пусть в данный момент источник, находящийся в точке x1, порождает звуковую волну (фиг. 51.1), тогда в следующий момент источник переместится в точку х2, а волна из точки х1 распространится в радиусе r1, который меньше расстояния, пройденного источником, а из точки х2, разумеется, пойдет другая волна.

Фиг. 51.1. Фронт ударной волны, образующий конус с вершиной в источнике и углом полураствора θ=arcsin(cw/v).

Когда источник переместится еще дальше, в точку х3, и отсюда тоже пойдет волна, то волна из точки х2 распространится в радиусе r2, а волна из точки х1— в радиусе r3. Конечно, все это происходит непрерывно, а не какими-то этапами, и поэтому получается целый ряд таких волновых колец с общей касательной линией, проходящей через центр источника. Мы видим, что источник, вместо того чтобы порождать сферические волны, как это произошло бы, будь он неподвижен, порождает фронт, образующий в трехмерном пространстве конус или в двухмерном пару пересекающихся прямых линий. Из рисунка нетрудно найти угол между этими двумя линиями. За данный отрезок времени источник проходит расстояние, пропорциональное его скорости v, скажем х3-х1. Тем временем фронт волны распространится на расстояние r3, пропорциональное cw— скорости волны. Ясно поэтому, что синус угла полураствора равен отношению скорости волны к скорости источника, а это может быть только тогда, когда cw меньше v, или скорость объекта больше скорости волны: