Давление, вызываемое звуком нашей речи, очень мало по сравнению с атмосферным — только одна миллионная часть или что-то в этом роде. Но при изменении давления на величину порядка 1 атм скорость волны увеличивается примерно на 20% и «заострение» фронта волны происходит соответственно быстрее. В природе, по-видимому, ничего не протекает бесконечно быстро и то, что мы называем «резким» фронтом, на самом деле имеет все же небольшую толщину; он не бесконечно крут. Расстояние, на котором все это происходит,— порядка средней длины свободного пробега молекулы, но на таких расстояниях волновое уравнение становится несправедливым, ведь при выводе его мы не учитываем молекулярной структуры газа.
Вернемся снова к фиг. 51.2. Мы видим, что кривизну легко объяснить, если понять, что давление вблизи вершины выше, чем вдали от нее, поэтому угол θ здесь больше. Таким образом, кривизна возникла вследствие зависимости скорости от силы волны. Например, волна от взрыва атомной бомбы в течение некоторого времени движется гораздо быстрее звука, пока не отойдет достаточно далеко и в результате расплывания не будет ослаблена в такой степени, что перепад давления станет малым по сравнению с атмосферным. При этом скорость фронта приближается к скорости звука в газе, в котором он распространяется. (Скорость ударной волны всегда оказывается выше скорости звука в газе перед ней и ниже скорости звука в газе за ней. Таким образом, импульсы, идущие сзади, будут догонять фронт, но сам он движется в среде быстрее, чем нормальная скорость звукового сигнала. Поэтому только по звуку никто не в силах предсказать появление ударной волны, пока не становится слишком поздно. Конечно, свет от взрыва бомбы виден раньше, но предугадать приход ударной волны невозможно, никакого звукового сигнала впереди нее нет.)
Накапливание волн — очень интересное явление, и в основном причина его состоит в том, что после прохода одной волны скорость следующей за ней волны должна возрасти.
Рассмотрим еще один пример того же явления. Представьте себе длинный канал конечной ширины и глубины, заполненный водой. Если с достаточной быстротой двигать вдоль канала поршень, то вода будет собираться перед ним, как снег перед снегоочистителем. Теперь вообразите ситуацию, подобную изображенной на фиг. 51.4, когда где-то в канале вдруг возникает скачок высоты уровня воды.
Фиг. 51.4. Падение воды и водовороты.
Можно показать, что длинные волны в канале идут быстрее по глубокой воде, чем по мелкой. Поэтому любой новый толчок или какие-то иные нерегулярности в энергии, поступающей от поршня, побегут вперед и соберутся на фронте волны. Теоретически мы снова в конце концов должны получить резкий фронт. Однако (см. фиг. 51.4) здесь возникают некоторые усложнения. Вы видите волну, идущую вверх по каналу, причем поршень находится где-то далеко с правой стороны канала. Сначала может показаться, что это хорошая волна, такая, какую и следует ожидать, но дальше она становится острее и острее, пока не произойдет то, что изображено на рисунке. Вода на поверхности начинает сильно бурлить и переливаться вниз, но, что самое существенное, край по-прежнему остается резким, и впереди него нет никакого возмущения.
В действительности волна на воде — вещь куда более сложная, чем звук. Однако для иллюстрации мы попытаемся проанализировать скорость так называемого высокого прилива в канале. Дело не в том, что это очень важно для наших целей (никакого обобщения здесь не будет), это только иллюстрация того, как законы механики, которые мы хорошо знаем, способны объяснить подобное явление.
Фиг. 51.5. Два разреза высокого прилива в канале. Разрез б сделан на интервал времени Δt позднее разреза а.
Вообразите на минуту, что поверхность воды имеет такой вид, как изображено на фиг. 51.5,а, и что на верхнем уровне h2 она движется со скоростью v, а фронт со скоростью u надвигается на невозмущенную поверхность, высота которой h1. Мы хотим определить скорость, с которой движется фронт. За промежуток времени Δt вертикальная плоскость, проходившая вначале через точку x1 передвинется на расстояние vΔt, т. е. от х1 до х2, а фронт волны пройдет расстояние uΔt.