Выбрать главу

Поскольку групповая и фазовая скорости не равны друг другу, то волны, вызванные движущимся объектом, будут уже не просто коническими, а гораздо более сложными и интересными. Вы можете видеть это на фиг. 51.10, где показаны волны, вызванные движущейся по воде лодкой.

Фиг. 51.10. След прошедшей моторной лодки.

Заметьте, что они совсем не похожи на то, что мы получали для звука (когда скорость не зависит от длины волны), где фронт волны был просто распространяющимся в стороны конусом. Вместо него мы получили волны позади движущегося объекта, фронт которых перпендикулярен его движению, да еще движущиеся под другими углами небольшие волны с боков. Всю эту картину движения волн в целом можно очень красиво воссоздать, зная только, что фазовая скорость пропорциональна квадратному корню из длины волны. Весь фокус заключается в том, что картина волн стационарна относительно лодки (движущейся с постоянной скоростью); все другие виды волн отстанут от нее.

До сих пор мы рассматривали длинные волны, для которых восстанавливающей силой была сила тяжести. Но когда волны становятся очень короткими, то основной восстанавливающей силой оказывается капиллярное притяжение, т. е. энергия поверхностного натяжения. Для волн поверхностного натяжения фазовая скорость равна

где Т — поверхностное натяжение, а ρ — плотность. Здесь все наоборот: чем короче длина волн, тем большей оказывается фазовая скорость. Если же действуют и сила тяжести и капиллярная сила, как это обычно бывает, то мы получаем комбинацию

где k=2π/λ — волновое число. Как видите, скорость волн на воде — вещь действительно довольно сложная. На фиг. 51.11 показана фазовая скорость как функция длины волны.

Фиг. 51.11. График зависимости фазовой скорости от длины волны для воды.

Она велика для очень коротких волн, велика для очень длинных волн, но между ними существует некоторая минимальная скорость распространения. Исходя из этой формулы, можно вычислить и групповую скорость: она оказывается равной 3/2 фазовой скорости для ряби и 1/2 фазовой скорости для волн «тяжести». Слева от минимума групповая скорость больше фазовой, а справа групповая скорость меньше. С этим фактом связано несколько интересных явлений. Поскольку групповая скорость с уменьшением длины волны быстро увеличивается, то, если мы создадим какие-то возмущения, возникнут волны соответствующей длины, которые идут с минимальной скоростью, а впереди них с большей скоростью побегут короткие и очень длинные волны. В любом водоеме можно легко увидеть очень короткие волны, а вот длинные волны наблюдать труднее.

Таким образом, мы убедились, что рябь, которая столь часто используется для иллюстрации простых волн, на самом деле гораздо сложнее и интереснее: у нее нет резкого волнового фронта, как в случае простых волн, подобных звуку или свету. Основная волна, которая вырывается вперед, состоит из мелкой ряби. Благодаря дисперсии резкое возмущение поверхности воды не приводит к резкой волне. Первыми все равно идут очень мелкие волны. Во всяком случае, когда по воде с некоторой скоростью движется объект, то возникает очень сложная картина, поскольку разные волны идут с разной скоростью. Взяв корыто с водой, можно легко продемонстрировать, что самыми быстрыми будут мелкие капиллярные волны, а уже за ними идут более крупные. Кроме того, наклонив корыто, можно увидеть, что там, где меньше глубина, меньше и скорость. Если волна идет под каким-то углом к линии максимального наклона, то она заворачивает в сторону этой линии. Таким способом можно продемонстрировать множество различных вещей и прийти к заключению, что волны на воде — куда более сложная вещь, чем волны в воздухе.