Чтобы построить модель ленты Мёбиуса, нужно взять вытянутую прямоугольную полоску бумаги и склеить ее края, предварительно повернув один из них. Если не поворачивать один из краев перед склеиванием, получится обычный цилиндр. Благодаря своей особой форме лента Мёбиуса обладает интересным свойством: она имеет только одну сторону. Цилиндр делит пространство на две части, внутреннюю и внешнюю, но с лентой Мёбиуса этого не происходит: у нее всего одна сторона.
Можно ли построить на ней такой граф с пятью вершинами, чтобы каждая из них соединялась с четырьмя другими? На следующем рисунке Мигеля де Гузмана показано, что эта задача не имеет решения на плоскости, но решаема на ленте Мёбиуса.
Мигель де Гузман всегда считал, что игры и головоломки составляют основу математики.
Обозначим пять точек ABCDE на ленте Мёбиуса так, чтобы получился четырехугольник ABCD, а точка Е располагалась в его центре. Таким образом, ее сразу можно соединить с четырьмя другими точками. На ленте (у которой всего одна сторона!) можно провести линию из точки В в точку D и из точки А в точку С, как показано на рисунке выше. Все пять точек окажутся соединены между собой согласно условию задачи.
Конечные геометрии
Представьте себе плантацию, где в несколько рядов высажены деревья или другие растения. Очевидно, что их можно представить в виде графа, имеющего множество изолированных вершин, не соединенных ребрами. Предположим, что мы хотим составить схему полетов небольшого самолета, который будет опрыскивать посадки, или же возможный маршрут сбора плодов. Такой маршрут укажут ребра графа.
Множество задач подстегнули интерес к конечным геометриям — геометрическим системам, имеющим конечное количество точек и линий, которые представляют собой некие совокупности этих точек.
На предыдущем рисунке с помощью графа представлена конечная геометрия, имеющая пять точек 1, 2, 3, 4, 5 и следующие «линии», образованные точками: {1, 2}, {1, 3}, {1, 4}, {1, 5}, {2, 5}, {3, 4, 5}. Как можно видеть из этого примера, связь между графами и конечными геометриями очевидна.
Подобно тому как в традиционной геометрии с бесконечным множеством точек и линий можно сформулировать ряд аксиом, подобных аксиомам Евклида, так и в конечной геометрии можно ввести различные аксиомы и говорить о пересечениях (общих точках) и параллельных линиях (линиях без общих точек).
Рассмотрим пример системы аксиом конечной геометрии.
I. Существует пять точек и две линии.
II. Каждая линия содержит минимум две точки.
III. Каждая линия содержит не более трех точек.
В соответствии с этими правилами можно описать возможные расположения точек и линий. Вместо того чтобы описывать полученные множества символами и словами, их можно представить намного проще. Для этого нужно построить все возможные графы с пятью вершинами и соответствующими ребрами. На следующем рисунке представлены все возможные варианты.
Чтобы оценить практическое значение этого примера, представьте, что точки — члены дирекции объединения, линии — комитеты, образованные двумя или тремя членами дирекции. Переформулируем вышеприведенные аксиомы в категориях директоров и комитетов.
I. Существует пять человек и два комитета.
II. Каждый комитет содержит минимум двух членов.
III. Каждый комитет содержит не более трех членов.
Очевидно, что этот пример можно усложнить, добавив новые точки и линии.
* * *
КЛАССИФИКАЦИИ И ИЕРАРХИИ
В классической геометрии особое внимание уделяется классификации фигур (например, по количеству сторон в них). Задачи о классификации становятся все более важными в самых разных областях: можно говорить о классификации фигур с помощью компьютерного зрения, классификации генов, симптомов болезней и так далее. Задачи о классификации появляются в сфере информационной безопасности (цифровые отпечатки пальцев, радужной оболочки глаза, распознавание голоса), на производстве, где при контроле качества бракованные детали автоматически определяются и исключаются из производственной цепочки, и в других областях.