Хавьер Арбонес и Пабло Милруд
«Мир математики»
№ 12
«Числа — основа гармонии.
Музыка и математика»
Предисловие
Музыка — скрытая работа ума, не сознающего, что он занят исчислениями.
Готфрид Вильгельм Лейбниц
Мировая музыкальная панорама начала XXI века фантастически разнообразна. Математика, электроника, биты и байты ведут музыку вперед, к новым рубежам. Была ли музыка менее разнообразной в начале XX века? А в X веке? А за 1000 лет до Рождества Христова? Изучались ли звуки с математической точки зрения в античном мире? Отразились ли новые технологии XIX века на музыке?
Музыка — одно из главных проявлений культуры человечества, охватывающее все страны и все эпохи. Она волнует и дарит наслаждение. Математика используется при анализе музыки и описывает множество ее аспектов: отношения между звуками в аккорде, резонанс, секреты партитуры и даже музыкальные игры. Умеющие наслаждаться математикой помимо тех эмоций, которые дарит музыка, получают удовольствие и от ее математической составляющей.
В этой книге мы расскажем о методе написания музыки, который придумал Моцарт, — с помощью игральных костей. Вы узнаете о произведениях, которые нельзя сыграть, не разгадав их загадку. Случайные события, фракталы и золотое сечение также скрываются на нотном стане. Почему существуют гармонические и диссонирующие аккорды? Благодаря чему мы в состоянии отличить скрипку от трубы? Может ли певец разбить стекло силой своего голоса? Какой вклад внесла технология в музыку? Как сформировалась современная музыкальная нотация и каким правилам она подчиняется?
Хотя в ответах на эти и многие другие вопросы не обойтись без математики, важно отметить, что музыка не зависит от науки. Разумеется, наука предлагает множество инструментов для создания музыки, и о них мы также подробно расскажем в этой книге. С помощью математики или без нее, создание музыки невозможно без вдохновения и труда композитора. Именно в этом заключается ценность, которую математика привносит в изучение музыки: она дает возможность понять и восхититься произведением искусства «из-за кулис», позволяет по-новому взглянуть на то, что казалось давно известным.
Глава 1
Игра на одной струне
Музыка стоит на втором месте после молчания, когда речь идет о том, чтобы выразить невыразимое.
Олдос Хаксли
Музыка эфемерна и существует только в нашей памяти. Она непостижима и неуловима. Именно поэтому музыка обладает магической аурой, благодаря которой люди испокон веков использовали ее в своих ритуалах. Музыка стала способом постичь божественное, доступным лишь избранным. Археологические открытия свидетельствуют, что музыкальные инструменты существовали еще в доисторические времена. Уже тогда были изобретены разнообразные ударные (например, бубен), а также примитивные трубы и флейты. Это доказывает, что первые мелодии были придуманы еще в древности.
Слово «музыка» происходит от греческого musike; в буквальном переводе это означает «искусство муз». В греческой мифологии музы были богинями — покровительницами искусств, танцев, астрономии и поэзии.
Ученики пифагорейской школы, которая сформировалась в VI веке до н. э., пытаясь постичь гармонию Вселенной, считали числа и отношения между ними отражением этой гармонии. Пифагорейцы создали настолько подробные астрономические и музыкальные математические модели, что невозможно не понять: музыку и математику они изучали неразрывно друг от друга. Пифагорейцы считали, что движение планет порождает незаметные для человека гармонические колебания, так называемую музыку сфер.
Во всех античных цивилизациях теоретические знания отделялись от декоративно-прикладного искусства. Семь свободных искусств делились на две большие группы: первая, тривиум (от лат. tri — три и vium — дорога), состояла из грамматики, диалектики и риторики; вторая, квадривиум (от quadri — четыре), включала арифметику, геометрию, астрономию и музыку. Считалось, что человек, изучивший эти семь дисциплин, «семь свободных искусств», живет в гармонии со Вселенной.
Музыкальная система Пифагора
Последователи пифагорейской школы изучали музыку на основе звуков, издаваемых единственной струной музыкального инструмента, называемого монохордом. Длина струны монохорда изменялась подобно тому, как гитарист зажимает струны при игре на современной гитаре. При изменении длины изменялась звучащая нота: чем короче струна, тем выше нота. Пифагорейцы попарно сравнивали звуки, соответствующие различным длинам струны. В своих экспериментах они описывали соотношения длин сторон, выражаемые небольшими числами: они делили струну пополам, в соотношении один к двум, два к одному и так далее.