Выбрать главу

Чистые и настоящие тона

График синусоидальной функции соответствует чистым звуковым колебаниям, которые не так часто встречаются в реальном мире. Примерами чистых звуков являются звуки камертона, свист, а также звук трения мокрого пальца о стекло.

Однако звук гитарной струны, колокола или флейты образуется основными колебаниями вкупе со множеством волн меньшей интенсивности и большей частоты. Эти волны называются обертонами. Любой звук, который не является чистым, состоит из множества одновременно звучащих звуков. В основе анализа отдельных обертонов каждого звука лежат открытия, совершенные французским математиком Жаном Батистом Жозефом Фурье (1768–1830), который доказал, что любую периодическую несинусоидальную волну можно разложить в ряд синусоидальных волн.

Звуковую волну можно представить как совокупность волн ее отдельных обертонов и волны основного звука. Этот кажущийся хаос в действительности представляет собой строго упорядоченную систему. В зависимости от структуры материала источника звука, окружающей среды, резонаторов и других факторов формируются обертоны основного тона, частоты которых непосредственно связаны с частотой основного звука. При анализе и оценке обертоны упорядочиваются и нумеруются в порядке возрастания частоты. В целом можно говорить, что с ростом частоты звука увеличивается его интенсивность. Однако интенсивность обертонов определяется множеством факторов, среди которых форма источника звука, форма полостей в нем, материал, из которого он изготовлен, и многие другие параметры. Сочетание этих параметров определяет, какие обертоны будут иметь большую интенсивность, какие — меньшую. Таким образом, многообразие возможных значений параметров порождает различные тембры, наделяющие звук особым звучанием.

Звук, издаваемый инструментом, обладает следующими четырьмя характеристиками, связанными с распространением звуковых волн:

— атака — время от начала игры на инструменте до момента, когда звук достигает наибольшей высоты;

— спад — временной интервал от точки наибольшей высоты до момента стабилизации звука;

— задержка — время, в течение которого извлечение звука продолжается, а его высота остается неизменной;

— затухание — время, в течение которого высота звука падает после того, как было прекращено извлечение звука.

График, соответствующий извлечению звука постоянной частоты.

Суперпозиция волн

При построении графика звуковой волны образуется кривая, которая получается наложением друг на друга отдельных волн, соответствующих основному звуку и его обертонам. Рассмотрим простой пример наложения волн для двух звуков одинаковой частоты, но разной высоты. Если фазы звуковых колебаний совпадают, амплитуда звуковых колебаний увеличивается:

Напротив, если колебания находятся в противофазе, то амплитуда звуковых колебаний уменьшается:

Каким образом эта особенность проявляется на практике? Не углубляясь в подробности, скажем, что этот эффект можно наблюдать в концертных залах: многочисленный хор звучит заметно громче, чем ансамбль из четырех или восьми исполнителей, а струнный оркестр — громче, чем струнный квартет.

В более сложных случаях, например, когда звук издается музыкальным инструментом, звуковая волна будет несинусоидальной, так как она будет состоять из множества отдельных волн. Благодаря преобразованию Фурье при анализе периодических волн можно определить частоту каждой составляющей.

Функция обертонов

Обертоны, выражающиеся степенями двойки (2, 4, 8, …), соответствуют октавам основного звука и усиливают его интенсивность. Обертоны, выражающиеся числами, кратными 3 (3, 6, 12, …), соотносятся с цепочкой квинт. Присутствие таких обертонов приводит к появлению назализованного тембра. Обертоны, выражающиеся числами ряда 5, 10, 20, …, соответствуют терциям основного звука и придают звуку теплоту. Наконец, обертоны, соответствующие диссонирующим интервалам, добавляют звуку шероховатость.

Синтез звука

Первые попытки сконструировать электрический орган были предприняты свыше 100 лет назад. Пионерами в этом направлении были американец Таддеус Кэхилл (1867–1934), который в 1900 году придумал телармониум; русский ученый Лев Термен (1896–1993), который в 1924 году изобрел инструмент, носящий его имя, — терменвокс, и француз Морис Мартено (1898–1980), усилиями которого в 1928 году свет увидел инструмент «волны Мартено». Эти открытия дали начало новому направлению развития технологий. Работы по созданию электронных музыкальных инструментов достигли пика после Второй мировой войны. В XX веке технологические открытия в области звука позволили глубоко изучить его природу и особенности, а также открыть эффективные способы синтеза звуков.