Круговая форма
Представление серии в форме круга особенно полезно при изучении додекафонии. Например, в круговой форме серия из ор. 25 Шёнберга выглядит так:
Чтобы получить ракоход серии, нужно всего лишь изменить направление обхода на противоположное:
Чтобы получить инверсию серии, достаточно отобразить ее симметрично самой себе относительно оси, проходящей через основной тон:
Для транспозиции нужно повернуть круг на необходимое число «часов»:
Инверсию транспозиции можно получить отражением относительно нужной оси:
Круговая форма позволяет лучше увидеть внутреннюю структуру некоторых серий. Например, в основе серии Струнного квартета ор. 28 Антона Веберна, о которой мы уже рассказывали, лежит тема ВАСН:
Если представить эту серию в круговой форме, то ее симметрия становится более наглядной. На рисунке ниже ось симметрии серии обозначена пунктирной линией. Благодаря такому расположению серия S совпадает со своей ракоходной инверсией при транспозиции на три полутона вниз. Иными словами, эта серия получается из исходной путем применения уже известных вам функций ракохода (R), инверсии (I) и транспозиции (Т), последняя из которых применяется трижды:
Тема ВАСН, которая сама по себе является симметричной, звучит в серии трижды: первый раз в исходном виде, второй — в инвертированном и транспонированном, третий — в транспонированном:
В круговом представлении повороты связывают последние ноты с первыми, замыкая круг. Таким образом, обход серии может начинаться с любой точки круга.
Альбан Берг
Третьим выдающимся представителем Новой венской школы был Альбан Берг (1885–1935). Он владел богатым музыкальным языком, и использование приемов додекафонии не помешало ему придать своим композициям в высшей степени экспрессивный характер. Среди наиболее известных его произведений — оперы «Воццек» и «Лулу», Лирическая сюита для струнного квартета и Концерт для скрипки с оркестром «Памяти ангела». Серия из последней композиции (представлена на рисунке)
обладает удивительной симметрией, которую можно заметить, если представить серию в форме круга:
Для этой серии характерно созвучие тонов, которое становится очевидным, если записать серию в числовой форме (0, 3, 7, 11, 2, 5, 9, 1, 4, 6, 8, 10). Обратите внимание, что серия содержит последовательность из четырех больших и малых аккордов, тем самым восстанавливается квинтовый круг: 0–7, 7–2, 2–9 и 9–4. Круг завершается четырьмя последовательными тонами.
На следующей иллюстрации показаны эти цепочки квинт (исключены некоторые промежуточные элементы):
Сериализм, контроль и хаос
Додекафония открыла путь к созданию музыкальных композиций под сильным влиянием математических моделей. Те же принципы, которым соответствуют высоты звуков в сериях, вскоре стали применяться и к другим параметрам звуков. Изначально композиторы стремились сделать распределение звуков разной высоты статистически равномерным. Почему это же нельзя применить и к другим параметрам — интенсивности, длительности нот, тембру или регистру? По сути, этот метод ничем не будет отличаться от метода, использованного для распределения высот звуков. Например, можно составить таблицу, в которой будут перечислены 12 степеней динамики, начиная от пиано пианиссимо и заканчивая форте фортиссимо. Можно составить серию из уровней относительной громкости и работать с ней так же, как и с другими сериями:
Аналогично можно указать длительности нот или любой другой параметр, а затем применить к нему музыкально-математические преобразования. Представителями этого направления являются французский композитор Пьер Булез (р. 1925) и немецкий композитор Карлхайнц Штокхаузен (1928–2007), которые систематически использовали серии применительно к различным свойствам звуков. Это направление называется интегральный сериализм.