L = 0,1100010000000000000000010000…
В 1873 году французский математик Шарль Эрмит (1822–1901), ученик Лиувилля, доказал, что е (основание натурального логарифма, приближенное значение которого равно 2,718281828459043235360287471352…) не является алгебраическим числом. Получить это доказательство было непросто — оно не далось самому Эйлеру.
Одно из самых известных чисел в истории математики — это число π («пи»), равное отношению длины окружности к ее диаметру. Доказательство трансцендентности е оказалось столь сложным, что Эрмит не решился взяться за аналогичное доказательство для числа π, о чем написал Карлу Вильгельму Борхардту (1817–1880): «Я не осмелился приступить к доказательству трансцендентности числа π. Если кто-то другой попытается это сделать, не будет человека счастливее меня, но поверьте мне, любезный друг, что это доказательство потребует немалых усилий».
Трансцендентность числа π была доказана Линдеманом лишь несколько лет спустя, в 1882 году. Это открытие стало важной вехой в истории математики, так как означало невозможность решения задачи о квадратуре круга.
Сегодня доказано, что трансцендентными являются числа е, π, еπ, 2√2, sin(1), ln2, lп3/ln2 и некоторые другие, однако до сих пор остается открытым вопрос о трансцендентности таких чисел, как . Известно, например, что по меньшей мере одно из двух чисел (возможно, оба сразу) является трансцендентным, но доказать трансцендентность каждого их них по отдельности до сих пор не удалось. Трансцендентные числа — редкие создания, обнаружить их непросто. Это наводит на мысль о том, что таких чисел немного, но в действительности это совершенно не так: их много, очень много, бесконечно много и даже больше.
Шарль Эрмит на фотографии 1887 года. Этот французский математик доказал, что число е не является алгебраическим.
Бесконечное множество вещественных чисел содержит рациональные числа, которые являются алгебраическими, и иррациональные числа, часть которых является трансцендентными. Однако трансцендентных чисел больше, чем алгебраических.
Кантор, обнаружив подлинную гениальность (полученные результаты изумили его самого), сформулировал простое доказательство того, что существует бесконечно много трансцендентных чисел. С одной стороны, известно, что множество вещественных чисел не является счетным. С другой стороны, множество алгебраических чисел является счетным. Из этих двух утверждений следует, что существуют числа, которые не являются алгебраическими. Более того, Кантор доказал, что множество этих чисел не является счетным.
Вывод: множество вещественных чисел так велико именно благодаря трансцендентным числам.
Арифметика трансфинитных чисел отличается от арифметики конечных чисел.
Георг Кантор
Как мы показали в предыдущем разделе, если дано множество А = {а, Ь, с, d}, можно образовать ряд его подмножеств
{а}, {Ь}, {с}, {d}, {а, b), {а, с}, {a, d), {Ь, с}, {Ь, d), {с, d), {а, Ь, с}, {а, Ь, d}, {а, с, d}, {Ь, с, d},
которые будут так называемыми собственными подмножествами А. Кроме них, подмножествами А также являются само множество А и пустое множество, обозначаемое символом 0 и не содержащее никаких элементов. Считается, что пустое множество является подмножеством любого множества, и эти два множества (исходное и пустое) считаются несобственными подмножествами. Добавив к вышеприведенному списку собственных подмножеств эти два множества, мы получим полный перечень всех подмножеств А:
{Θ}, {а}, {Ь}, {с}, {d}, {а, Ь}, {а, с}, {а, d}, {b, с}, {fc, d}, {с, d}, {а, Ь, с}, {а, b, d}, {а, с, d}, {Ь, с, d}, {а, Ь, с, d}, —
итого 16 подмножеств.
Заметим, что 24 = 16, таким образом, число подмножеств А равно 2 в степени, равной числу элементов А. Нетрудно доказать, что это соотношение справедливо для всех множеств. Таким образом, для любого множества, содержащего n элементов, число его подмножеств будет равно 2n.
Множество, образованное всеми подмножествами А, называется множеством степенью A и обозначается . Кантор доказал, что для любого множества его множество-степень больше, чем само множество, то есть оно содержит больше элементов, или, если быть математически корректными, его кардинальное число больше, чем у исходного множества. Будем обозначать кардинальное число А как |А|.
Изложенный выше результат можно записать так:
Ученому принадлежит доказательство нескольких теорем, но когда речь идет о теореме Кантора, обычно имеют в виду именно этот результат, который можно записать в виде
|А|< 2|A|
Теорема Кантора позволяет упорядочивать бесконечности. Кантор считал, что «самая маленькая» бесконечность соответствует кардинальному числу множества — множества натуральных чисел. Это кардинальное число он обозначил .
Таким образом, имеем
По теореме Кантора получим:
Последовательность кардинальных чисел, фигурирующую в этом неравенстве, Кантор назвал числами алеф, присвоив каждому из них порядковый номер: алеф-ноль, алеф-один и т. д. Они записываются буквой еврейского алфавита алеф с индексом:
Это так называемые трансфинитные числа.
В упорядоченной последовательности трансфинитных чисел содержится любое число, которое может существовать, в том числе такое, которое мы даже не можем себе представить. Если до Кантора считалось, что ничто не может быть больше бесконечности, то благодаря его открытиям мы можем с уверенностью утверждать, что всегда существует другая бесконечность, которая будет больше данной. Кантор превзошел самого Создателя: сколь большое число ни создал бы Бог, всегда будет существовать другое, большее число. И этот научный результат противоречил религиозным взглядам самого Кантора.
* * *
ПОЧТИ БЕСКОНЕЧНОСТЬ
За рамки нашей конечной природы выходят не только бесконечные или трансфинитные числа.
Например, число
которое может быть результатом неких математических расчетов, невероятно велико. Процессор компьютера, выполнив необходимые инструкции, может получить это число за разумное количество шагов. Это возможно потому, что и язык математики, и языки программирования предоставляют все необходимые для этих вычислений инструменты. Но если бы нам потребовалось записать все цифры этого числа на бумаге, мы не смогли бы этого сделать: для такой записи требуется лист бумаги, число частиц в котором превышает число частиц во всей Вселенной. Кроме того, для записи этого числа потребовалось бы время, значительно превышающее возраст Вселенной.
Пока что мы говорили о кардинальности применительно к множеству. Мы увидели, что понятие кардинальности обозначает число элементов множества, а также что каждому элементу конечных множеств можно последовательно присвоить натуральное число. С другой стороны, когда речь идет о множествах с бесконечным числом элементов, пронумеровать их составляющие можно с помощью взаимно однозначного соответствия, при котором каждому элементу множества ставится в соответствие натуральное число. Множества, для которых возможно установить такое соответствие, называются счетными. Однако мы также увидели, что существуют множества, которые не являются счетными, и чтобы как-то обозначить количество их элементов, нам пришлось обратиться к понятию кардинальности. Таким образом, кардинальность множества — это не совсем число, а скорее понятие, связанное с числовой величиной. По сути, на этом понятии основан удивительный трюк, позволяющий узнать, насколько велико множество. Заключается он в сравнении множеств по определенным правилам, которые позволяют однозначно сказать, когда множества одинаково велики, а когда — нет. При этом не имеет значения, о конечных или бесконечных множествах идет речь.