* * *
ОБЩАЯ ФОРМУЛА СЛОЖНЫХ ПРОЦЕНТОВ
Общая формула для расчета сложных процентов за n лет, начисляемых по вкладу или по кредиту с начальной суммой С0, выводится так: в первый год (n = 1) начисляется сумма процентов, равная С0∙i. Во второй год (n = 2) эта сумма процентов прибавляется к начальному капиталу: С1 = С0 + С0∙i = С0∙(1 + i), и так происходит до последнего года.
n = 0; С0,
n = 1; С1 = С0 + С0∙i = С0∙(1 + i),
n = 2; С2= С1 + С1∙i = С0∙(1 + i) + С0∙(1 + i)∙i = С0∙(1 + i)∙(1 + i) = С0∙(1 + i)2,
n = 3; С3= С2 + С2∙i = С0∙(1 + i)2 + С0∙(1 + i)2∙i = С0∙(1 + i)2∙(1 + i) = С0∙(1 + i)3
……
n = n; Сn = С0∙(1 + i)n.
Таким образом, общая формула сложных процентов записывается так: Сn = С0∙(1 + i)n. Из этой формулы, в свою очередь, можно определить значение процентной ставки i или число периодов n при известных остальных значениях переменной:
С другой стороны, если в формуле Сn = С0∙(1 + i)n перейти к логарифмам, получим:
Эти формулы используются как для расчета будущей стоимости капитала, вложенного под определенные проценты, так и для расчета годовой суммы процентов, полученной на вложенный капитал, а также для определения числа лет или периодов времени, по прошествии которых мы получим заданную сумму.
* * *
Если i = 12 % годовых, но проценты начисляются ежемесячно (n = 12), эквивалентная процентная ставка будет равняться
где i = 12 % годовых, n = 12 месяцев.
Если бы проценты начислялись раз в квартал, то эквивалентная процентная ставка равнялась бы
где i = 12 % годовых, n = 4 квартала.
Реальная процентная ставка изменяется под влиянием инфляции. Так, если мы вложим средства в государственные облигации под 5 %, а инфляция составит 3 %, реальная процентная ставка, характеризующая реальный прирост покупательной способности денег, будет определяться как разность между номинальной процентной ставкой и уровнем инфляции.
Реальная процентная ставка = Номинальная процентная ставка — Уровень инфляции.
Формула сложных процентов очень проста в использовании. Покажем, как можно вычислить конечную стоимость денег при известных процентной ставке и периоде времени. Например, если мы вложим первоначальный капитал C0 = 10 000 евро на три года под 5 % годовых, каким будет конечный капитал С3?
C0 = 10000 евро; i = 5 % (0,05), n = 3 года.
Применив формулу С3 = С0∙(1 + i)3 получим:
С3 = 10000∙(1 + 0,05)3 = 10000∙1,157625 = 11576,25 евро.
Однако расчет сложных процентов становится труднее, если другие члены этого уравнения неизвестны. Так, перед инвестором может встать вопрос: на какой срок нужно вложить капитал под определенный процент, чтобы вложенный капитал удвоился или чтобы получить определенную сумму?
Рассмотрим простой пример: допустим, мы хотим определить, за какой период времени вложенный капитал в 10000 евро удвоится, если процентная ставка находится на уровне i = 5 %. Зная начальный капитал С0 = 10000 евро, конечный капитал Сn = 20000 евро и процентную ставку i = 5 %, применим формулу