Выбрать главу

Фрагмент так называемого папируса Райнда — библии египетских математиков.

Папирус имеет 33 сантиметра в ширину и более 5 метров в длину.

Китайцы, в свою очередь, записывали числа не в строки, а в столбцы. Они делили числа на «мужские» и «женские» (нечетные и четные соответственно). Одним из достижений китайских математиков является определение положительных и отрицательных чисел. В Китае в качестве цифр использовались иероглифы, то есть каждый иероглиф, кроме обычного, имел и числовое значение, и это вызывало немало трудностей. Кроме того, китайцы считали, что слова имеют магический смысл, зависящий от того, какое число они обозначают, и приписывали иероглифам всевозможные сверхъестественные свойства.

Майя, жившие в Центральной Америке за много лет до прибытия туда Колумба, также записывали числа в столбцы, а не в строки. Они использовали календарь, в котором месяц состоял из 20 дней, год — из 360 дней, и позиционную систему счисления по основанию 20, а их знаки для обозначения числовых величин были весьма похожи на китайские и индийские.

Майя и их предшественники, ольмеки, совершили множество открытий в математике и астрономии и примерно в 36 году до н. э. дали определение такому понятию, как ноль, или «ничто» (именно этим годом датировано первое письменное упоминание этого числа). Но поскольку 0 в системе счисления майя не мог использоваться в арифметических операциях, это помешало дальнейшему развитию вычислений.

Китайская система счисления: 8 раз по 10 = 80.

Греческая система счисления: (3 + 5) раз по 10 = 8 раз по 10 = 80.

Система счисления майя: 4 раза по 20 = 80.

Египетская система счисления: 8 раз по 10 = 80.

Римская система счисления: 50 + 10 + 10 + 10 = 80.

Система счисления шумеров: 60 + 10+10 = 80.

Одно и то же число, представленное в шести разных системах счисления.

Самыми умелыми математиками древнего мира были индийцы. В своих арифметических расчетах они использовали огромные величины и решали задачи, требующие невероятного воображения (в одной из них, например, упоминаются 1024 дерущиеся обезьяны).

VI веком н. э. датируются два великих открытия индийских математиков: они стали присваивать цифрам разные значения в зависимости от их позиции в записи (одна и та же цифра в зависимости от позиции обозначала единицы, десятки, сотни или тысячи) и начали обозначать особым знаком, 0, число элементов пустого множества (индийцы называли это число «шунья», арабы — «сефир»). Вначале 0 обозначался просто точкой, потом — точкой, расположенной внутри круга, а затем на смену этим обозначениям пришел круг.

Индийские цифры VI века н. э. записывались так же, как и современные: восемьдесят тысяч триста сорок три

= 80 343

= восемь десятков тысяч, ноль тысяч, три сотни, четыре десятка и три единицы

= 8∙10 + 0∙103 + 3∙102 + 4∙101 + 3∙100.

Греки, подобно китайцам, использовали в качестве цифр буквы, однако их система счисления не была позиционной, что усложняло запись чисел и развитие алгоритмов вычислений. По этой причине древние греки не очень преуспели в науке о числах — арифметике, однако добились огромных успехов в геометрии.

Аристотель (384–322 годы до н. э.) понимал слово «экономия» как управление домашним хозяйством, а науку, которую мы сегодня называем экономикой, называл по-гречески хрематистикой. Он не занимался подробным анализом экономических вопросов и не изучал взаимосвязь между переменными, однако рассмотрел такие понятия, как стоимость, деньги и проценты.