РВ(|k — 660| >= |700–660 |) < 0,05.
Преобразуем неравенство и получим:
Вместо биномиального распределения можно с высокой точностью использовать нормальное распределение, симметричное относительно среднего значения μ = 660 при р = 0,33. Следовательно,
PB(|k — 660)| >= 40) = РВ(620 >= k >= 700) = 2РВ(k >= 700), так как выделенные области равны.
Чтобы заменить биномиальный закон (РВ для дискретной переменной k) на нормальный (PN для непрерывной переменной х), нужно внести поправку:
PBinominal (k >= 1) PNormal (x >= a — 0.5).
Таким образом, как можно видеть на графике,
PB(|k — 660)| >= 40) = 2РВ(k >= 700) 2∙PN(x >= 700 — 0,5) = 2∙PN(x >= 699,5).
Теперь переменная х заменяется переменной z, соответствующей стандартизованному нормальному распределению, и мы сможем воспользоваться стандартными таблицами. Замена выполняется по формуле
Как можно видеть на графике,
В таблицах значений, соответствующих стандартизованному нормальному распределению, значению z < 1,878 соответствует вероятность PNT (z <= 1,878) = 0,96999 и РВ(|k — 660 | >= 40) 2 (1–0,96999) = 0,0602, что превышает 0,05. Так как вероятность, соответствующая гипотезе р = 0,33, составляет 0,0602, что превышает 0,05, мы можем не отвергать гипотезу о том, что в генеральной совокупности численностью 8 миллионов человек уровень безработицы составляет 33 %. Иными словами, можно утверждать, что в этом регионе уровень безработицы составляет 33 %, возможная ошибка не превышает 5 %.
Аналогичные расчеты следует провести и для других гипотез, соответствующих значениям р, близким к 35 % (р = 0,35), например 34, 36, 37, 38 %…
Затем можно составить таблицу полученных результатов и определить, стоит ли принимать или опровергать гипотезу для каждого значения р.
В соответствии с этой таблицей можно сделать вывод: значения выборки (700 безработных из 2000 опрошенных) могли быть взяты из генеральной совокупности, в которой уровень безработицы находится между 33 и 37 %, при этом возможная ошибка, или уровень значимости, составляет 5 %.
Чтобы гарантировать, что выборка корректно отражает свойства генеральной совокупности (то есть чтобы сделать статистический вывод), сначала необходимо рассчитать необходимый размер выборки, определить ее тип (способ выбора опрашиваемых), который будет лучше всего подходить для изучения рассматриваемой статистической переменной, примерные значения переменных, которые будут подвергаться оценке, и наиболее подходящие статистические методы.
Многие возмущаются, когда читают в прессе, что команда приобрела футболиста, баскетболиста или хоккеиста за астрономическую сумму. Какими могут быть экономические причины столь огромных трат? Ведь к стоимости перехода игрока следует прибавить его годовую зарплату, порой превышающую 5 миллионов евро.
Формулировка этой задачи достаточно сложна. Если команда заключает контракт со звездным игроком, то вполне возможно, что ее показатели улучшатся, и она одержит больше побед. Если команда побеждает, у нее становится больше болельщиков, которые будут приходить на стадион, фан-клуб пополнится новыми членами, возрастут доходы от членских взносов, продажи билетов, рекламы, атрибутики с цветами клуба, отчисления от телетрансляций, а за победу в турнирах команда получит значительные средства от национальных и международных федераций — организаторов соревнований. Таким образом, нужно определить, будут ли компенсированы высокие расходы на приобретение спортсмена и на выплату ему заработной платы дополнительными доходами.
Рассмотрим следующий пример: футбольная команда из 22 игроков уже несколько лет не выигрывала ни одного турнира. Для простоты предположим, что все расходы клуба ограничиваются зарплатами игроков, которые в среднем получают 3 миллиона евро в год, таким образом, суммарная зарплата составляет 66 миллионов евро.
Также будем предполагать, что команда получает доходы всего из двух источников: за выступление в чемпионате страны команда получает 10 миллионов от продажи билетов и телетрансляций, а также 5 миллионов евро в год от телетрансляций. Таким образом, общий доход клуба составляет 15 миллионов евро, расходы — 66 миллионов евро, убытки — 51 миллион евро ежегодно.