Выбрать главу

И по мере того как развивалось понимание предмета электромагнетизма, появлялись такие технические возможности, о которых древние не могли даже мечтать: стало возможным посылать сигналы по телеграфу на большие расстояния, беседовать с человеком, который находится за много километров от вас, без помощи какой-либо линии связи, включать огромные энергетические системы — большие водяные турбины, соединенные многосоткилометровыми линиями проводов с другой машиной, которую пускает в ход один рабочий простым поворотом колеса; многие тысячи разветвляющихся проводов и десятки тысяч машин в тысячах мест приводят в движение различные механизмы на фабриках и в квартирах. Все это вращается, двигается, работает благодаря нашему знанию законов электромагнетизма.

Сегодня мы используем и еще более тонкие эффекты. Гигантские электрические силы можно сделать очень точными, их можно контролировать и использовать на всякий лад. Наши приборы так чувствительны, что мы способны узнать, что сейчас делает человек только по тому, как он воздействует на электроны, заключенные в тонком металлическом прутике за сотни километров от него. Для этого только нужно приспособить этот прутик в качестве телевизионной антенны!

В истории человечества (если посмотреть на нее, скажем, через десять тысяч лет) самым значительным событием XIX столетия, несомненно, будет открытие Максвеллом законов электродинамики. На фоне этого важного научного открытия гражданская война в Америке в том же десятилетии будет выглядеть мелким провинциальным происшествием.

Глава 2 ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ВЕКТОРНЫХ ПОЛЕЙ

§ 1. Понимание физики

Физик должен обладать умением подходить к задаче с разных точек зрения. Точный анализ реальных физических проблем обычно крайне сложен, и любое конкретное физическое явление может оказаться слишком запутанным и не поддающимся анализу путем решения дифференциальных уравнений. Но можно все же получить хорошее представление о поведении системы, выработав в себе особую способность чувствовать характер решения в различных обстоятельствах. Этой цели хорошо служат представления о линиях поля, о емкостном, индуктивном и активном сопротивлениях. Мы потратим достаточно много времени на их изучение. Это поможет нам приобрести способность ощущать, что происходит в тех или иных электромагнитных явлениях. С другой стороны, ни одна из вспомогательных, эвристических моделей (например, картина силовых линий) на самом деле не может вместить в себя адекватно и точно все события. Имеется лишь один точный способ представления законов — способ дифференциальных уравнений. Уравнения обладают тем преимуществом, что, во-первых, они фундаментальны, а во-вторых (насколько нам известно), точны. Если вы их выучили, вы всегда можете к ним вернуться. В них нет ничего, что следовало бы потом забыть.

Чтобы начать понимать, что должно произойти в тех или иных условиях, вам понадобится какое-то время. Вам придется порешать уравнения, и всякий раз, когда вы решите их, вы тем самым узнаете что-то новое о характере решений. Чтобы запомнить эти решения, полезно также сформулировать их смысл на языке линий поля и иных подобных понятий. Таков путь, на котором приходит истинное «понимание» уравнений. В этом и заключается разница между физикой и математикой. Математики или люди с математическим складом ума часто при «изучении» физики теряют физику из виду и впадают в заблуждение. Они говорят: «Послушайте, эти дифференциальные уравнения — уравнения Максвелла — ведь это все, что есть в электродинамике; ведь сами физики признают, что нет ничего, что бы не содержалось в этих уравнениях. Уравнения эти сложны; ладно, но это всего лишь математические уравнения, и если я разберусь в них математически, я разберусь и в физике». Но ничего из этого не выходит. Математики, которые подходят к физике с этой точки зрения (а таких очень много), обычно не делают большого вклада в физику, да, кстати, и в математику. Их постигает неудача оттого, что настоящие физические ситуации реального мира так запутаны, что нужно обладать гораздо более широким пониманием уравнений.

Дирак объяснил, что значит действительно понять уравнение — понять, не ограничиваясь его строгим математическим смыслом. Он сказал: «Я считаю, что понял смысл уравнения, если в состоянии представить себе общий вид его решения, не решая его непосредственно». Значит, если у нас есть способ узнать, что случится в данных условиях, не решая уравнения непосредственно, мы «понимаем» уравнения в применении к этим условиям. Физическое понимание — это нечто неточное, неопределенное и абсолютно нематематическое, но для физика оно совершенно необходимо.