Выбрать главу

(2.38)

Подобно этому,

(2.39)

и

(2.40)

Комбинацию ×h называют «ротор» (пишут rot h), или (редко) «вихрь h» (пишут curl h). Происхождение этого названия и физический смысл комбинации мы обсудим позже.

В итоге мы получили три сорта комбинаций, куда входит :

Используя эти комбинации, можно пространственные вариации полей записывать в удобном виде, т. е. в виде, не зависящем от той или иной совокупности осей координат.

В качестве примера применения нашего векторного дифференциального оператора ∇ выпишем совокупность векторных уравнений, в которой содержатся те самые законы электромагнетизма, которые мы словесно высказали в гл. 1. Их называют уравнениями Максвелла.

Уравнения Максвелла

(2.41)

где ρ (ро) — «плотность электрического заряда» (количество заряда в единице объема), а j — «плотность электрического тока» (скорость протекания заряда сквозь единицу площади). Эти четыре уравнения содержат в себе законченную классическую теорию электромагнитного поля. Видите, какой элегантной и простой записи мы добились с помощью наших новых обозначений!

§ 6. Дифференциальное уравнение потока тепла

Приведем другой пример векторной записи физического закона. Этот закон не из точных, но во многих металлах и других материалах, проводящих тепло, он проявляется совершенно четко. Известно, что если взять плиту из какого-то материала и нагреть одну ее сторону до температуры Т2, а другую охладить до Т1, то тепло потечет от T2 к Т1 (фиг. 2.7, а). Поток тепла пропорционален площади торцов А и разнице температур. Кроме того, он обратно пропорционален расстоянию между торцами. (Для заданной разницы температур чем тоньше плита, тем мощнее поток тепла.)

Фиг. 2.7. Тепловой поток через плиту (а) и бесконечно малая плитка, параллельная изотермической поверхности в большом блоке вещества (б).

Обозначая через J тепловую энергию, проходящую сквозь плиту за единицу времени, мы напишем

(2.42)

Коэффициент пропорциональности ϰ (каппа) называется теплопроводностью.

Что произойдет в более сложных случаях, скажем, в блоке материала необычной формы, в котором температура как-то прихотливо меняется? Рассмотрим тонкий слой материала и представим себе плиту наподобие изображенной на фиг. 2.7, а, но в миниатюре. Ориентируем ее торцы параллельно изотермическим поверхностям (фиг. 2.7, б), так что для этой малой плиты выполняется уравнение (2.42).

Если площадь этой плиты ΔА, то поток тепла за единицу времени равен

(2.43)

где Δs — толщина плиты. Но ΔJ/ΔA мы раньше определили как абсолютную величину h — вектора, направленного туда, куда течет тепло. Тепло течет от T1+ΔT к T1, так что вектор h перпендикулярен изотермам (фиг. 2.7, б). Далее, ΔТ/Δs как раз равно быстроте изменения Т с изменением положения. А поскольку изменения положения перпендикулярны изотермам, то наше ΔT/Δs — это максимальная скорость изменения. Она равна поэтому величине Т. И, наконец, раз направления Т и h противоположны, то (2.43) можно записать в виде векторного уравнения

(2.44)

(Знак минус написан потому, что тепло течет в сторону понижения температуры.) Уравнение (2.44) — это дифференциальное уравнение теплопроводности в массиве вещества. Вы видите, что это чисто векторное уравнение. С обеих сторон стоят векторы (если ϰ число). Это обобщение на произвольный случай частного соотношения (2.42), верного для прямоугольной плиты.

Мы с вами должны будем научиться выписывать все соотношения элементарной физики [наподобие (2.42)] в этих хитроумных векторных обозначениях. Они полезны не только потому, что уравнения начинают от этого выглядеть проще. В них намного яснее проступает физическое содержание уравнений безотносительно к выбору системы координат.

§ 7. Вторые производные векторных полей

Пока мы имели дело только с первыми производными. А почему не со вторыми? Из вторых производных можно составить несколько комбинаций:

(2.45)

Вы можете убедиться, что никаких иных комбинаций быть не может.

Посмотрим сперва на вторую комбинацию (б). Она имеет ту же форму, что и