Выбрать главу

В качестве примера рассмотрим этот тензор не в веществе, а в пустом пространстве с электромагнитным полем. Вы знаете, что поток энергии электромагнитного поля описывается вектором Пойнтинга S0c2E×В. Так что х-, у- и z-компоненты вектора S с релятивистской точки зрения являются компонентами: Stx, Sty и Stz нашего тензора энергии-импульса. Симметрия тензора Sij переносится и на временные компоненты, так что четырехмерный тензор Sμv тоже симметричен:

(31.29)

Другими словами, компоненты Sxt, Syt, Szt, которые представляют плотности х-, у- и z-компонент импульса, равны также х-, у- и z-компонентам вектора Пойнтинга S, или, как мы видели раньше из других соображений, вектора потока энергии.

Оставшиеся компоненты тензора электромагнитного напряжения Sμv тоже можно выразить через электрическое и магнитное поля Е и В. Иначе говоря, для электромагнитного поля в пустом пространстве мы должны допустить существование тензора напряжений, или, выражаясь менее таинственно, потока импульса электромагнитного поля. Мы уже обсуждали это в гл. 27 (вып. 6) в связи с уравнением (27.21), но тогда мы не входили в детали.

Тем из вас, кто хочет испытать свою удаль на четырехмерных тензорах, может понравиться выражение для тензора Sμv через поля:

где суммирование по α и β проводится по всем их значениям (т. е. t, x, у и z), но, как обычно в теории относительности, для суммы ∑ и символа δ принимается специальное соглашение. В суммах слагаемые со значками х, у, z должны вычитаться, а δtt=+1, тогда как δxx.=δууzz=-1 и δμv=0 для всех μ≠v (с=1). Сможете ли вы доказать, что эта формула приводит к плотности энергии Stt=(ε0/2)(E2+B2) и вектору Пойнтинга[42] ε0Е×В? Можете ли вы показать, что в электростатическом поле, когда В=0, главная ось напряжения направлена по электрическому полю и вдоль направления поля возникает натяжение0/2)E2 и равное ему давление в направлении, перпендикулярном направлению поля?

Глава 32 ПОКАЗАТЕЛЬ ПРЕЛОМЛЕНИЯ ПЛОТНОГО ВЕЩЕСТВА

Повторить: всё что в табл. 32.

§ 1. Поляризация вещества

Здесь я хочу обсудить явления преломления света, ну и, разумеется, его поглощение плотным веществом. Теорию показателя преломления мы уже рассматривали в гл. 31 (вып. 3), но тогда наши знания математики были весьма ограничены и мы остановились только на показателе преломления веществ с малой плотностью наподобие газов. Но физические принципы, приводящие к возникновению показателя преломления, мы там все же выяснили. Электрическое поле световой волны поляризует молекулы газа, создавая тем самым осциллирующие дипольные моменты, а ускорение осциллирующих зарядов приводит к излучению новых волн поля. Это новое поле, интерферируя со старым, изменяет его. Изменение поля эквивалентно тому, что происходит сдвиг фазы первоначальной волны. Из-за того что сдвиг фазы пропорционален толщине материала, эффект в целом оказывается эквивалентным изменению фазовой скорости света в материале. Прежде, когда рассматривалось это явление, мы пренебрегали усложнениями, возникающими от таких эффектов, как действие новой измененной волны на поле осциллирующего диполя. Мы предполагали, что силы, действующие на заряды атомов, определяются только падающей волной, тогда как на самом деле на осциллятор действует не только падающая волна, но и волны, излученные другими атомами. В то время нам еще было трудно учесть этот эффект, поэтому мы изучали только разреженные газы, где его можно считать несущественным.

вернуться

42

Если не полагать с=1, как это делается здесь, то плотность энергии в принятых в книге единицах будет равна (ε0/2)(E2+с2B2) или в единицах СИ 1/20E2+(l0)B2]. — Прим. ред.