Выбрать главу

(32.17)

где Н отличается от ε0с2В, так как последнее учитывает эффекты атомных токов. (При этом j' представляет то, что осталось от токов.) Таким образом, у Максвелла было четыре полевых вектора: Е, D, В и Н, причем в D и Н скрывалось то, на что он не обратил внимания, — процессы, происходящие внутри вещества. Уравнения, написанные в таком виде, вы встретите во многих местах.

Чтобы решить их, необходимо как-то связать D и Н с другими полями, поэтому зачастую писали

(32.18)

Однако эти связи верны лишь приближенно для некоторых веществ, и то лишь когда поля не изменяются слишком быстро со временем. (Для синусоидально изменяющихся полей зачастую можно писать уравнения таким способом, считая при этом ε и μ комплексными функциями частоты, но для произвольных изменений поля со временем это неверно.) На какие только ухищрения не пускаются ученые, чтобы решить уравнения! А мне кажется, что правильнее всего оставить уравнения записанными через фундаментальные величины, как мы понимаем их теперь, т. е. как раз то, что мы и проделали.

§ 3. Волны в диэлектрике

Теперь нам предстоит выяснить, какого сорта электромагнитные волны могут существовать в диэлектрическом веществе, где других зарядов, кроме тех, что связаны в атомах, нет. Таким образом, мы возьмем ρ=-∇·Р и j=∂P/∂t. При этом уравнения Максвелла примут такой вид:

(32.19)

Мы можем решить эти уравнения, как делали это прежде. Начнем с применения к уравнению (32.19в) операции ротора:

Используя затем векторное тождество

и подставляя выражение для ∇×B из (32.19б), получаем

Используя уравнение (32.19а) для ∇·Е, находим

(32.20)

Таким образом, вместо волнового уравнения мы теперь получили, что даламбертиан Е равен двум членам, содержащим поляризацию Р.

Однако Р зависит от Е, поэтому уравнение (32.20) все еще допускает волновые решения. Сейчас мы будем ограничиваться изотропными диэлектриками, т. е. Р всегда будет иметь то же направление, что и Е. Попробуем найти решение для волны, движущейся в направлении оси z. Электрическое поле при этом будет изменяться как еi(ωt-kz). Предположим также, что волна поляризована в направлении оси х, т. е. что электрическое поле имеет только x-компоненту. Все это записывается следующим образом:

(32.21)

Вы знаете, что любая функция от (z-vt) представляет волну, бегущую со скоростью v. Показатель экспоненты в выражении (32.21) можно переписать в виде

так что выражение (32.21) представляет волну, фазовая скорость которой равна

В гл. 31 (вып. 3) показатель преломления n определялся нами из формулы

С учетом этой формулы (32.21) приобретает вид

Таким образом, показатель n можно определить, если мы найдем ту величину k, которая необходима, чтобы выражение (32.21) удовлетворяло соответствующим уравнениям поля, и затем воспользуемся соотношением

(32.22)

В изотропном материале поляризация будет иметь только x-компоненту; кроме того, Р не изменяется с изменением координаты х, поэтому ∇·P=0 и мы сразу же избавляемся от первого члена в правой стороне уравнения (32.20). Вдобавок мы считаем наш диэлектрик «линейным», поэтому Рх будет изменяться как еiωt и ∂2Px/∂t2=-ω2Px. Лапласиан же в уравнении (32.20) превращается просто в ∂2Ex/∂z2=-k2Еx, так что в результате получаем

(32.23)

Теперь на минуту предположим, что раз Е изменяется синусоидально, то Р можно считать пропорциональной Е, как в уравнении (32.5). (Позднее мы вернемся к этому предположению и обсудим его.) Таким образом, пишем

При этом Ех выпадает из уравнения (32.23), и мы находим

(32.24)

Мы получили, что волна вида (32.21) с волновым числом k, задаваемым уравнением (32.24), будет удовлетворять уравнениям поля. Использование же выражения (32.22) для показателя n дает