Выбрать главу

§ 5. Теорема Лармора

Теперь уже из наших результатов можно сделать кое-какие заключения. Прежде всего в классической теории момент μ всегда пропорционален J, причем для каждого вида атомов со своей константой пропорциональности. В классической теории у электрона нет никакого спина и константа пропорциональности всегда равна -qe/2m, иначе говоря, мы должны в (34.6) положить g=1. Отношение μ к J не зависело от внутреннего движения электронов. Таким образом, в соответствии с классической теорией все системы электронов должны были прецессировать с одной и той же угловой скоростью. (В квантовой механике это неверно.) Этот результат связан с одной теоремой классической механики, которую мне бы хотелось сейчас доказать. Предположим, что имеется группа электронов, которые удерживаются вместе притяжением к центральной точке, подобно электронам, притягиваемым ядром. Эти электроны будут также взаимодействовать друг с другом, и движение их, вообще говоря, довольно сложно. Пусть вы нашли их движение в отсутствие магнитного поля и хотите знать, каково будет движение в слабом магнитном поле. Теорема утверждает, что движение в слабом магнитном поле всегда будет таким же, как и движение без поля с добавочным вращением относительно оси поля с угловой скоростью ωL=qeB/2m. (Это то же самое, что и ωp при g=1.) Разумеется, возможных движений может быть много. Все дело в том, что каждому движению без магнитного поля соответствует движение в поле, которое состоит из первоначального движения плюс равномерное вращение. Это и есть теорема Лармора, а частота ωL называется ларморовой частотой.

Мне бы хотелось показать вам, как можно доказать эту теорему, но детали доказательства я предоставлю вам самим.

Возьмем сначала электрон в центральном силовом поле. На него просто действует направленная к центру сила F(r). Если теперь включить однородное магнитное поле, то появится дополнительная сила qv×В, так что полная сила будет равна

(34.18)

Посмотрим теперь на те же самые электроны из системы координат, вращающейся с угловой скоростью ω относительно оси, проходящей через центр силы и параллельной полю В. Она уже не будет инерциальной системой, а посему нам нужно добавить надлежащие псевдосилы: центробежные силы и силы Кориолиса, о которых мы говорили в гл. 19 (вып. 2). Там мы обнаружили, что в системе отсчета, вращающейся с угловой скоростью ω, действуют кажущиеся тангенциальные силы, пропорциональные vr — радиальной компоненте скорости:

(34.19)

Кроме того, там действует кажущаяся радиальная сила

(34.20)

где vt — тангенциальная компонента скорости, измеряемая во вращающейся системе отсчета. (Радиальная компонента vr одна и та же как для вращающихся, так и для инерциальных систем.)

Теперь для достаточно малых угловых скоростей (т. е. когда (ωrvt) первым (центробежным) слагаемым в уравнении (34.20) можно пренебречь по сравнению со вторым (кориолисовым). После этого уравнения (34.19) и (34.20) можно записать вместе как

(34.21)

Если же теперь скомбинировать вращение и магнитное поле, то мы должны к силе (34.18) добавить силу (34.21). Полная сила получится такой:

(34.22)

[В последнем слагаемом по сравнению с (34.21) мы переставили сомножители в векторном произведении и изменили знак.] Взглянув теперь на полученный результат, мы видим, что если

то последние два члена сократятся, и единственной силой в движущейся системе будет сила F(r). Движение электрона будет таким же, как и в отсутствие магнитного поля, но добавится, разумеется, вращение. Мы доказали теорему Лармора для одного электрона. Поскольку при доказательстве мы предполагали ω малым, то это означает, что теорема верна только для слабых магнитных полей. Единственно, что я прошу вас рассмотреть самостоятельно, — это случай многих электронов, взаимодействующих друг с другом в том же самом центральном поле. Докажите теорему для такого случая. Таким образом, каким бы сложным ни был атом, если его поле центральное, — теорема будет верна. Но это уже конец классической механики, ибо то, что система прецессирует таким образом, неверно. Частота прецессии ωp в уравнении (34.11) только тогда равна ωL, когда g=1.