Выбрать главу

Повторить: гл. 1 (вып. 5) «Внутреннее устройство диэлектрика

§ 1. Квантованные магнитные состояния

В предыдущей главе мы говорили, что в квантовой механике момент количества движения системы не может иметь произвольного направления, а его компоненты вдоль данной оси могут принимать только определенные дискретные эквидистантные значения. Это поразительная, но характерная особенность квантовой механики. Вам может показаться, что еще слишком рано влезать в такие вещи, что надо подождать, пока вы хоть немного не привыкнете к ним и не будете готовы воспринимать подобные идеи. Но дело в том, что привыкнуть к ним вы никогда не сможете. Вы никогда не сможете легко их воспринимать. Это, пожалуй, самое сложное из всего, что я рассказывал вам до сих пор и, главное, нет способа описать это как-то более вразумительно и не так хитроумно и сложно по форме. Поведение вещества в малых масштабах, как я уже говорил много раз, отличается от всего того, к чему вы привыкли, и поистине весьма странно. Вы, конечно, согласитесь, что было бы неплохо попытаться поближе познакомиться с явлениями в малом масштабе, продолжая одновременно использовать классическую физику, и приобрести поначалу хоть какой-то опыт, пусть даже не понимая всего достаточно глубоко. Понимание этих вещей приходит очень медленно, если оно приходит вообще. Конечно, понемногу начинаешь чувствовать, что может и что не может произойти в данной квантовомеханической ситуации, а это, возможно, и называется «пониманием», но добиться приятного чувства «естественности» квантовомеханических правил здесь невозможно. Они-то, конечно, естественны, но с точки зрения нашего повседневного опыта на привычном уровне остаются очень уж необычными. Мне бы хотелось объяснить вам, что позиция, которую мы собираемся занять по отношению к этому правилу о дискретности значений момента количества движения, совершенно отлична от отношения ко многим другим вещам, о которых шла речь. Я даже не буду пытаться «объяснять» его, но должен хоть рассказать вам, что получается. Было бы нечестно с моей стороны, описывая магнитные свойства материалов, не указать, что классическое объяснение магнетизма, т. е. момента количества движения и магнитного момента, несостоятельно.

Одно из наиболее необычных следствий квантовой механики состоит в том, что момент количества движения вдоль любой оси всегда оказывается равным целой или полуцелой доле ℏ, причем какую бы ось вы ни взяли, это всегда будет так. Парадоксальность здесь заключается в следующем любопытном факте: если вы возьмете любую другую ось, то окажется, что компоненты относительно этой оси тоже будут взяты из того же самого набора значений. Однако оставим рассуждения до того времени, когда у вас наберется достаточно опыта и вы сможете насладиться тем, как этот кажущийся парадокс в конце концов разрешится.

Сейчас просто примите на веру, что у каждой атомной системы есть число j, называемое спином системы (оно может быть либо целым, либо полуцелым), и что компоненты момента количества движения относительно любой данной оси всегда принимают одно из значений между +jℏ и -jℏ:

(35.1)

Мы упомянули также, что магнитный момент любой простой атомной системы имеет то же самое направление, что и ее момент количества движения. Это справедливо не только для атомов или ядер, но и для элементарных частиц. Каждая элементарная частица обладает характерной для нее величиной j и своим собственным магнитным моментом. (Для некоторых частиц обе они равны нулю.) Мы понимаем под «магнитным моментом системы», что ее энергия в направленном по оси z магнитном поле для слабых полей может быть записана как — μzВ. Мы должны условиться не брать слишком больших полей, ибо они будут возмущать внутренние движения системы и энергия не будет мерой магнитного момента, который система имела до включения магнитного поля. Но если поле достаточно слабо, то оно изменяет энергию на величину

(35.2)

с тем условием, что в этом выражении мы должны сделать подстановку

(35.3)

причем Jz равно одному из значений (35.1).

Предположим, что мы взяли систему со спином j=3/2 В отсутствие магнитного поля у системы было бы четыре различных возможных состояния, соответствующих различным значениям Jz с одной и той же энергией. Но в тот момент, когда мы включаем магнитное поле, появляется дополнительная энергия взаимодействия, которая разделяет эти состояния на четыре состояния, слабо различающиеся по энергии, или, как говорят, первоначальный энергетический уровень расщепился на четыре новых уровня. Эти уровни определяются энергией, пропорциональной произведению В на ℏ и на 3/2, 1/2, -1/2 или -3/2 в зависимости от величины Jz. Расщепление энергетических уровней в атомной системе со спинами 1/2, 1 и 3/2 показаны на фиг. 35.1.