Выбрать главу

(35.14)

Число же атомов в единице объема со спином, направленным вверх, равно

(35.15)

а со спином, направленным вниз,

(35.16)

Постоянная а должна определяться из условия

(35.17)

т.е. равна полному числу атомов в единице объема. Таким образом, мы получаем

(35.18)

Однако нас интересует средний магнитный момент в направлении оси z. Каждый атом со спином, направленным вверх, дает в этот момент вклад, равный -μ0, а со спином, направленным вниз, +μ0, так что средний момент будет

(35.19)

Тогда М — магнитный момент единицы объема — будет равен N<μ>ср. Воспользовавшись выражениями (35.15)—(35.17), получим

(35.20)

Это и есть квантовомеханическая формула для М в случае атомов со спином j=1/2. К счастью, ее можно записать более коротко через гиперболический тангенс:

(35.21)

График зависимости М от В приведен на фиг. 35.7.

Фиг. 35.7. Изменение намагниченности парамагнетика при изменении напряженности магнитного поля В.

Когда поле В становится очень большим, гиперболический тангенс приближается к единице, а М — к своему предельному значению Nμ0. Таким образом, при сильных полях происходит насыщение. Нетрудно понять, почему так получается — ведь при достаточно больших полях все магнитные моменты выстраиваются в одном и том же направлении. Другими словами, при насыщении все атомы находятся в состоянии со спинами, направленными вниз, и каждый из них дает вклад в магнитный момент, равный μ0.

Обычно при комнатной температуре и полях, которые можно получить (порядка 10000 гс), отношение μ0B/kT равно приблизительно 0,02. Чтобы наблюдать насыщение, необходимо спуститься до очень низких температур. Для комнатной и более высоких температур обычно можно thx заменить на x и написать

(35.22)

Точно так же, как и в классической теории, намагниченность М оказывается пропорциональной полю В. Даже формула оказывается той же самой, за исключением того, что в ней, по-видимому, где-то потерян множитель 1/3. Но нам еще нужно связать μ0 в квантовомеханической формуле с величиной μ, которая появилась в классическом результате, в выражении (35.9).

В классической формуле у нас появилось μ2=μ·μ — квадрат вектора магнитного момента, или

(35.23)

В предыдущей главе я уже говорил, что очень часто правильный ответ можно получить из классических вычислений с заменой J·J на j(j+1)2. В нашем частном примере j=1/2, так что

Подставляя этот результат вместо J·J в (35.23), получаем

или, вводя величину μ0, определенную соотношением (35.12), получаем

Подставляя это вместо μ2 в классическое выражение (35.9), мы действительно воспроизведем истинный квантовомеханический результат — формулу (35.22).

Квантовая теория парамагнетизма легко распространяется на атомы с любым спином j. При этом для намагниченности в слабом поле получим

(35.24)

где

(35.25)

представляет комбинацию постоянных с размерностью магнитного момента. Моменты большинства атомов приблизительно равны этой величине. Она называется магнетоном Бора. Спиновый магнитный момент электрона почти в точности равен магнетону Бора.

§ 5. Охлаждение адиабатическим размагничиванием

Парамагнетизм имеет одно весьма интересное применение. При очень низкой температуре и в сильном магнитном поле атомные магнитики выстраиваются. При этом с помощью процесса, называемого адиабатическим размагничиванием, можно получить самые низкие температуры. Возьмем какую-то парамагнитную соль, содержащую некоторое число редкоземельных атомов (например, аммиачный нитрат празеодима), и начнем охлаждать ее жидким гелием до 1—2° К в сильном магнитном поле. Тогда показатель μВ/kT будет больше единицы, скажем 2 или 3. Большинство спинов направлено вверх, и намагниченность почти достигает насыщения. Для облегчения давайте считать, что поле настолько велико, а температура так низка, что все атомы смотрят в одном направлении. Теплоизолируйте затем соль (удалив, например, жидкий гелий и создав вакуум) и выключите магнитное поле. При этом температура соли падает.