(4.30)
на этой поверхности.
Теперь покажем, что две «торцевые» поверхности могут быть без ущерба для величины интеграла (4.30) перекошены относительно радиуса. Хотя это верно всегда, но для наших целей достаточно только показать, что это справедливо тогда, когда «торцы» малы и стягивают малый угол с вершиной в источнике, т. е. в действительности бесконечно малый угол. На фиг. 4.6 показана поверхность S, «боковые грани» которой радиальны, а «торцы» перекошены.
Фиг. 4.6. Поток Е из поверхности S равен нулю.
На рисунке они не малы, но надо представить себе, что на самом деле они очень малы. Тогда поле Е над поверхностью будет достаточно однородным, так что можно взять его значение в центре. Если торец наклонен на угол θ, то его площадь возрастает в 1/cosθ раз, а Еn — компонента Е, нормальная к поверхности торца, убывает в cosθ раз, так что произведение ЕnΔа не меняется. Поток из всей поверхности S по-прежнему равен нулю.
Теперь уже легко разглядеть, что и поток из объема, окруженного произвольной поверхностью S, обязан быть равным нулю. Ведь любой объем можно представить себе составленным из таких частей, как на фиг. 4.6. Вся поверхность разделится на пары торцевых участков, а поскольку потоки через каждую из них внутрь и наружу объема попарно уничтожаются, то и суммарный поток через поверхность обратится в нуль. Идея эта иллюстрируется фиг. 4.7.
Фиг. 4.7. Всякий объем можно представлять себе состоящим из бесконечно малых усеченных конусов. Поток E сквозь один конец каждого конического сегмента равен и противоположен потоку сквозь другой конец. Общий поток из поверхности S поэтому равен пулю.
Мы получаем совершенно общий результат: суммарный поток Е через любую поверхность S в поле точечного заряда равен нулю.
Будьте, однако, внимательны! Наше доказательство работает только тогда, когда поверхность S не окружает заряд. А что случилось бы, если бы точечный заряд оказался внутри поверхности? Как и раньше, поверхность можно было бы разделить на пары площадок, связанные радиальными прямыми, проходящими через заряд (фиг. 4.8).
Фиг. 4.8. Если заряд находится внутри поверхности, поток наружу не равен нулю.
Потоки через эти участки по той же причине, что и раньше, по-прежнему попарно равны, но только теперь их знаки одинаковы. Поток из поверхности, окружающей заряд, не равен нулю. Тогда чему же он равен? Это можно определить с помощью фокуса. Допустим, что мы «убрали» заряд «изнутри», окружив его маленькой поверхностью S' так, чтобы она лежала целиком внутри первоначальной поверхности 5 (фиг. 4.9).
Фиг. 4.9. Поток через S равен потоку через S'.
Теперь в объеме, заключенном между двумя поверхностями S и S', никакого заряда нет. Общий поток из этого объема (включая поток через S') равен нулю, в чем можно убедиться при помощи прежних аргументов. Они говорят нам, что поток через S' внутрь объема такой же, как поток через S наружу.
Для S' мы можем выбрать любую, какую угодно форму, поэтому давайте сделаем ее сферой с зарядом в центре (фиг. 4.10).
Фиг. 4.10. Поток через сферическую поверхность, охватывающую точечный заряд q, равен qlε0.
Тогда поток через нее подсчитать легко. Если радиус малой сферы равен r, то значение Е повсюду на ее поверхности равно
и направлено всегда по нормали к поверхности. Весь поток через S' получится, если эту нормальную составляющую Е умножить на площадь поверхности: