Если мы отправимся от высоких температур и начнем двигаться вниз, то при некой критической температуре, называемой температурой Кюри Тc, неожиданно проявляется ферромагнитное поведение. Эта температура соответствует на фиг. 36.14 линии b3, касательной к кривой а, наклон которой равен единице. Так что температура Кюри определяется из равенства
(36.39)
При желании уравнение (36.38) можно записать в более простом виде через Тc:
(36.40)
Что же получается для малых намагничивающих полей Н? Из фиг. 36.14 нетрудно понять, что получится, если нашу прямую линию сдвинуть немного направо. В случае низкой температуры точка пересечения немного сдвинется направо по слабо наклоненной части кривой а и изменения М будут сравнительно невелики. Однако в случае высокой температуры точка пересечения побежит по крутой части кривой а и изменения М станут относительно быстрыми. Эту часть кривой мы фактически можем приближенно заменить прямой линией а с единичным наклоном и написать
Теперь можно разрешить уравнение относительно М/Мнас:
(36.41)
Мы получаем закон, несколько напоминающий закон для парамагнетизма:
(36.42)
Отличие состоит, в частности, в том, что мы получили намагниченность как функцию Н, с учетом взаимодействия атомных магнитиков, однако главное то, что намагниченность обратно пропорциональна разности температур Т и Тс, а не просто абсолютной температуре Т. Пренебрежение взаимодействием между соседними атомами соответствует λ=0, что, согласно уравнению (36.39), означает Тс=0. Результат при этом получится в точности таким же, как и в гл. 35.
Нашу теоретическую картину можно сверить с экспериментальными данными для никеля. На опыте обнаружено, что ферромагнитные свойства никеля исчезают, когда температура поднимается выше 631° К. Это значение можно сравнить со значением Тс, вычисленным из равенства (36.39). Вспоминая, что Mнас=μN, мы получаем
Из плотности и атомного веса никеля находим
А вычисление μ из уравнения (36.28) и подстановка λ=1/3 дает
Различие с экспериментом примерно в 2600 раз! Наша теория ферромагнетизма полностью провалилась!
Можно попытаться «подправить» нашу теорию, как это сделал Вейсс, предположив, что по каким-то неизвестным причинам λ равно не 1/3, а (2600)·1/3, т. е. около 900. Оказывается, что подобная величина получается и для других ферромагнитных материалов типа железа. Вернемся к уравнению (36.36) и попробуем понять, что это может означать? Мы видим, что большая величина λ означает, что Ва (локальное поле, действующее на атом) должно быть больше, много больше, чем мы думали. Фактически, записывая Н=В-M/ε0c2, мы получили
В соответствии с нашей первоначальной идеей, когда мы принимали λ=1/3, локальная намагниченность М уменьшает эффективное поле Ва на величину — 2М/Зε0. Даже если бы наша модель сферической полости была не очень хороша, мы все равно ожидали бы некоторого уменьшения. Вместо того чтобы объяснить явление ферромагнетизма, мы вынуждены считать, что намагниченность увеличивает локальное поле в огромное число раз: в тысячу и даже больше. По-видимому, не существует какого-то разумного способа для создания действующего на атом поля такой ужасной величины, ни даже поля нужного знака! Ясно, что наша «магнитная» теория ферромагнетизма потерпела досадный провал. Мы вынуждены заключить, что в ферромагнетизме мы имеем дело с какими-то немагнитными взаимодействиями между вращающимися электронами соседних атомов. Это взаимодействие должно порождать у соседних спинов сильную тенденцию к выстраиванию в одном направлении. Мы увидим позднее, что это взаимодействие связано с квантовой механикой и принципом запрета Паули.