Выбрать главу

Что получится, если мы попытаемся повторить то же самое для направления [110], которое лежит в плоскости ху под углом 45° к оси х? Мы включаем небольшое поле, и намагниченность за счет роста домена резко увеличивается. Если затем мы продолжаем увеличивать поле, то выясняется, что для достижения насыщения поле должно быть довольно большим, ибо вектор намагниченности нужно повернуть в сторону от направления легкого намагничивания. Если это объяснение правильно, то при экстраполяции кривой [110] точка пересечения с вертикальной осью должна будет давать значение намагниченности, составляющее 1/√2 от намагниченности насыщения. Оказывается, что так оно на самом деле и происходит. Это отношение очень-очень близко к 1/√2. Аналогично для направления [111], которое идет по диагонали куба, мы находим, как и ожидали, что при экстраполяции кривая пересекает вертикальную ось на расстоянии, составляющем 1/√2 от значения, соответствующего насыщению.

На фиг. 37.8 показано соответствующее поведение двух других ферромагнетиков: никеля и кобальта.

Фиг. 37.8. Кривые намагничивания для монокристаллов железа, никеля и кобальта.

Никель отличается от железа. Оказывается, что направлением легкого намагничивания у него будет направление [111]. Кобальт имеет гексагональную кристаллическую структуру; для этого случая система обозначений была изменена. Здесь в основании шестиугольника располагают три оси и еще одну ось, перпендикулярную к ним, так что здесь используется четыре числа. Направление [0001] — это направление гексагональной оси, а [1010]— направление, перпендикулярное к этой оси. Вы видите, что кристаллы различных металлов устроены по-разному.

Теперь мы рассмотрим такой поликристаллический материал, как обычный кусок железа. Внутри него содержится огромное множество маленьких кристалликов, кристаллические оси которых направлены во все стороны. Но это не то же самое, что домены. Вспомните, все домены были частью одного кристалла, а в куске железа, как видно из фиг. 37.9, содержится множество различных кристаллов с разной ориентацией.

Фиг. 37.9. Микроструктура ненамагниченного поликристаллического ферромагнитного материала. Каждый кристаллик имеет направление легкого намагничивания и разбивается на домены, которые обычно спонтанно намагничены в атом направлении.

В каждом из этих кристаллов, вообще говоря, содержится несколько доменов. Когда к куску поликристаллического материала мы прилагаем слабое магнитное поле, доменные барьеры в кристалликах начинают смещаться, и домены, направление намагниченности которых совпадает с направлением легкого намагничивания, растут все больше и больше. До тех пор пока поле остается очень малым, этот рост обратим; если мы выключим поле, намагниченность снова вернется к нулю. Этот участок кривой намагничивания обозначен на фиг. 37.10 буквой а.

Для больших полей в области, обозначенной буквой b, все становится гораздо более сложным. В каждом маленьком кристалле материала встречаются напряжения и дислокации, там есть примеси, грязь и дефекты. И при всех полях, за исключением лишь очень слабых, стенки доменов при своем движении наталкиваются на них. Между доменной стенкой и дислокацией (или границей зерна или примесью) возникают взаимодействия. В результате, когда стенка наталкивается на препятствие, она как бы приклеивается и держится там, пока поле не достигнет определенной величины. Затем, когда поле несколько подрастет, стенка внезапно срывается. Таким образом, движение доменной стенки оказывается отнюдь не плавным, как в идеальном кристалле: она движется скачкообразно, то и дело останавливаясь на мгновение. Если бы мы рассмотрели кривую намагничивания в микроскопическом масштабе, то увидели бы нечто подобное изображенному на вставке фиг. 37.10.

Но самое важное заключается в том, что эти прыжки намагничивания могут вызвать потерю энергии. Прежде всего, когда стенка домена проскакивает наконец через препятствие, она очень быстро движется к следующему. Быстрое движение влечет за собой и быстрое изменение магнитного поля, которое в свою очередь создает в кристалле вихревые токи. Последние растрачивают энергию на нагревание металла. Другой эффект состоит в том, что, когда домен неожиданно изменяется, часть кристаллов из-за магнитострикции изменяет свои размеры. Каждый неожиданный сдвиг доменной стенки создает небольшую звуковую волну, которая тоже уносит энергию. Благодаря таким эффектам эта часть кривой намагничивания необратима: происходит потеря энергии. В этом и заключается причина гистерезисного эффекта, ибо движение скачками вперед — одно, а движение назад — уже другое и в оба конца затрачивается энергия. Это похоже на езду по ухабистой дороге.