Некоторым, например, нравится описывать упругие свойства материалов другими постоянными. Но таких постоянных всегда берется две, и они могут быть связаны с нашими σ и Y.
Последний общий закон, который нам нужен, — это принцип суперпозиции. Поскольку оба закона (38.4) и (38.5) линейны в отношении сил и перемещений, то принцип суперпозиции будет работать. Если при одном наборе сил вы получаете некоторое дополнительное перемещение, то результирующее перемещение будет суммой перемещений, которые бы получились при независимом действии этих наборов сил.
Теперь мы имеем все необходимые общие принципы: принцип суперпозиции и уравнения (38.4) и (38.5), т. е. все, что нужно для описания упругости. Впрочем, с таким же правом можно было заявить: у нас есть законы Ньютона, и это все, что нужно для механики. Или, задавшись уравнениями Максвелла, мы имеем все необходимое для описания электричества. Оно, конечно, так; из этих принципов вы действительно можете получить почти все, ибо ваши теперешние математические возможности позволяют вам продвинуться достаточно далеко. Но мы все же рассмотрим лишь некоторые специальные приложения.
§ 2. Однородная деформация
В качестве первого примера посмотрим, что происходит с прямоугольным бруском при однородном гидростатическом сжатии. Давайте поместим брусок в резервуар с водой. При этом возникнет сила, действующая на каждую грань бруска и пропорциональная его площади (фиг. 38.2).
Фиг. 38.2. Брусок под действием равномерного гидростатического давления.
Поскольку гидростатическое давление однородно, то напряжение (сила на единичную площадь) на каждой грани бруска будет одним и тем же. Прежде всего найдем изменение длины бруска. Его можно рассматривать как сумму изменений длин, которые происходили бы в трех независимых задачах, изображенных на фиг. 38.3.
Фиг. 38.3. Гидростатическое давление равно суперпозиции трех сжатий.
Задача 1. Если мы приложим к концам бруска давление р, то деформация сжатия будет отрицательна и равна p/Y:
Задача 2. Если мы надавим на горизонтальные грани бруска, то деформация по высоте будет равна -p/Y, а соответствующая деформация в боковом направлении будет +σp/Y. Мы получаем
Задача 3. Если мы приложим к сторонам бруска давление р, то деформация давления снова будет равна p/Y, но теперь нам нужно определить деформацию длины. Для этого боковую деформацию нужно умножить на -σ. Боковая деформация равна
так что
Комбинируя результаты этих трех задач, т. е. записывая Δl как Δl1+Δl2+Δl3, получаем
(38.6)
Задача, разумеется, симметрична во всех трех направлениях, поэтому
(38.7)
Интересно также найти изменение объема при гидростатическом давлении. Поскольку V=lwh, то для малых перемещений можно записать
Воспользовавшись (38.6) и (38.7), мы имеем
(38.8)
Имеются любители называть ΔV/V объемной деформацией и писать
Объемное напряжение р (гидростатическое давление) пропорционально вызванной им объемной деформации — снова закон Гука. Коэффициент К называется объемным модулем и связан с другими постоянными выражением
(38.9)
Поскольку коэффициент К представляет некоторый практический интерес, то во многих справочниках вместо Y и σ приводятся Y и К. Но если вам нужно знать σ, то вы всегда можете получить это значение из формулы (38.9). Из этой формулы видно также, что коэффициент Пуассона σ должен быть меньше 1/2. Если бы это было не так, то объемный модуль К был бы отрицательным и материал при увеличении давления расширялся бы. Это позволило бы добывать механическую энергию из любого кубика, т. е. это означало бы, что кубик находится в неустойчивом равновесии. Если бы он начал расширяться, то расширение продолжалось бы само по себе с высвобождением энергии.