(38.38)
Нас интересуют только малые изгибы (обычная вещь в инженерных конструкциях), поэтому квадратом производной (dz/dx)2 можно пренебречь по сравнению с единицей и считать
(38.39)
Нам нужно еще знать изгибающий момент M. Он является функцией от х, так как в любом поперечном сечении он равен моменту относительно нейтральной оси. Весом самой балки пренебрежем и будем учитывать только силу W, действующую вниз на свободный ее конец. (Если хотите, можете сами учесть ее вес.) При этом изгибающий момент на расстоянии х равен
ибо это и есть момент сил относительно точки х, с которым действует груз W, т. е. груз, который должен поддерживать балку. Получаем
или
(38.40)
Это уравнение можно проинтегрировать без всяких фокусов и получить
(38.41)
воспользовавшись предварительно нашим предположением, что z(0)=0 и что dz/dx в точке x=0 тоже равно нулю. Это и есть граничные условия. А отклонение конца будет
(38.42)
т. е. отклонение возрастает пропорционально кубу длины балки. При выводе нашей приближенной теории мы предполагали, что при изгибании поперечное сечение бруска не изменяется. Когда толщина бруска мала по сравнению с радиусом кривизны, поперечное сечение изменяется очень мало и все отлично. Однако в общем случае этим эффектом пренебречь нельзя — согните пальцами канцелярскую резинку и вы сами убедитесь в этом. Если первоначально поперечное сечение было прямоугольным, то, согнув резинку, вы увидите, как она выпирает у основания (фиг. 38.15).
Фиг. 38.15. Согнутая резинка (а) и ее поперечное сечение (б).
Это получается потому, что, согласно отношению Пуассона, при сжатии основания материал «раздается» вбок. Резинку очень легко согнуть или растянуть, но она несколько напоминает жидкость в том отношении, что изменить ее объем очень трудно. Это и сказывается при сгибании резинки. Для несжимаемых материалов отношение Пуассона было бы точно равно 1/2, для резинки же оно близко к этому числу.
§ 5. Продольный изгиб
Теперь воспользуемся нашей теорией, чтобы понять, что происходит при продольном изгибе бруска, опоры или стержня. Рассмотрим то, что изображено на фиг. 38.16.
Фиг. 38.16. Продольно изогнутая балка.
Здесь стержень, обычно прямой, удерживается в согнутом виде двумя противоположными силами, давящими на его концы. Найдем форму стержня и величину сил, действующих на концы.
Пусть отклонение стержня от прямой линии между концами будет у(х), где х — расстояние от одного конца. Изгибающий момент M в точке Р на рисунке равен силе F, умноженной на плечо, перпендикулярное направлению у:
(38.43)
Воспользовавшись выражением для момента (38.36), имеем
(38.44)
При малых отклонениях можно считать 1/R=-d2y/dx2 (отрицательный знак выбран потому, что кривизна направлена вниз). Отсюда
(38.45)
т. е. появилось дифференциальное уравнение для синуса. Таким образом, для малых отклонений кривая такого продольно изогнутого стержня представляет синусоиду. «Длина волны» λ. этой синусоиды в два раза больше расстояния L между концами. Если изгиб невелик, она просто равна удвоенной длине неизогнутого стержня. Таким образом, получается кривая
Беря вторую производную, находим
Сравнивая это с (38.45), видим, что сила равна
(38.46)
Для малого продольного изгиба сила не зависит от перемещения у!
Физически же получается вот что. Если сила F меньше определяемой уравнением (38.46), то никакого продольного изгиба не происходит. Но если она хоть немного больше этой силы, то балка внезапно и очень сильно согнется, т. е. под действием сил, превышающих критическую величину π2YI/L2 (часто называемую «силой Эйлера»), балка будет «гнуться». Если на втором этаже здания разместить такой груз, что нагрузка на поддерживающие колонны превысит силу Эйлера, то здание рухнет. Другая область, где очень важны продольно изгибающие силы, — это космические ракеты. С одной стороны, ракета должна выдерживать свой вес на стартовой площадке и вынести напряжения во время ускорения, а с другой — очень важно свести вес всей конструкции до минимума, чтобы полезная нагрузка и полезная мощность двигателей были как можно больше.