Если же деформация неоднородна, то любой кусочек желе может быть как-то искажен и, кроме того, могут возникнуть местные повороты. Когда все возмущения малы, мы получаем
(39.10)
где ωij, — антисимметричный тензор
(39.11)
описывающий поворот. Нам незачем беспокоиться о поворотах; займемся только деформацией, которая описывается симметричным тензором еij.
§ 2. Тензор упругости
Теперь, чтобы описать деформации, мы должны связать их с внутренними силами — с напряжениями в материале. Мы предполагаем, что закон Гука справедлив для любого кусочка материала, т. е. что напряжения всюду пропорциональны деформациям. В гл. 31 мы определили тензор напряжений Sij как i-ю компоненту силы, действующей на единичной площадке, перпендикулярной оси j. Закон Гука говорит, что каждая компонента Sij линейно связана с каждой компонентой напряжения. Но поскольку S и l содержат по девяти компонент, то всего для описания упругих свойств материала требуется 9×9=81 возможный коэффициент. Если материал однороден, то все эти коэффициенты будут постоянными. Мы обозначим их Cijkl, определив посредством уравнения
(39.12)
где каждый значок i, j, k и l может принимать значения 1, 2 или 3. Поскольку коэффициенты Сijkl связывают один тензор с другим, они тоже образуют тензор — на этот раз тензор четвертого ранга. Мы можем назвать его тензором упругости.
Предположим, что все Cijkl известны и что к телу какой-то произвольной формы мы приложили сложные силы. При этом возникнут все сорта деформаций — тело как-то исказится. Каковы будут перемещения? Вы понимаете, что это довольно сложная задача. Если вам известны деформации, то из уравнения (39.12) можно найти напряжения, и наоборот. Но напряжения и деформации, которые возникли в любой точке, зависят от того, что происходит во всей остальной части материала.
Наиболее простой способ подступиться к такой задаче — это подумать об энергии. Когда сила F пропорциональна перемещению х, скажем F=kx, то работа, затраченная на любое перемещение х, равна kx2/2. Подобным же образом энергия w, запасенная в любой единице объема деформированного материала, оказывается равной
(39.13)
Полная же работа W, затраченная на деформацию всего тела, будет интегралом от w по всему его объему:
(39.14)
Следовательно, это и есть потенциальная энергия, запасенная во внутренних напряжениях материала. Когда тело находится в равновесии, эта внутренняя энергия должна быть минимальной. Таким образом, проблема определения деформаций в теле может быть решена нахождением таких перемещений и по всему телу, при которых W минимальна. В гл. 19 (вып. 6) я говорил вам о некоторых общих идеях вариационного исчисления, применяемого при решении задач на минимизацию подобного рода. Однако сейчас мы больше не будем вдаваться в подробности этой задачи.
Сейчас нас главным образом будет интересовать то, что можно сказать относительно общих свойств тензора упругости. Прежде всего ясно, что на самом деле в Cijkl содержится не 81 различный параметр. Поскольку Sij и eij — симметричные тензоры, каждый из которых включает только шесть различных элементов, то Cijkl состоит максимум из 36 различных компонент. Обычно же их гораздо меньше.
Рассмотрим специальный случай кубического кристалла. Плотность энергии w для него получается такой:
(39.15)
т. е. всего 81 слагаемое! Но кубический кристалл обладает определенными симметриями. В частности, если кристалл повернуть на 90°, то все его физические свойства останутся теми же. Например, у него должна быть одна и та же жесткость относительно растяжения как в направлении оси у, так и в направлении оси х. Следовательно, если мы переменим наши определения осей координат х и у в уравнении (39.15), то энергия не должна измениться. Поэтому для кубического кристалла