Выбрать главу

(39.16)

Мы можем еще показать, что компоненты, наподобие Сххху, должны быть нулями. Кубический кристалл обладает тем свойством, что он симметричен при отражении относительно любой плоскости, перпендикулярной к одной из осей координат. Если мы заменим у на —y, то ничего не должно измениться. Но изменение у на -у меняет еxy на -еxy, так как перемещение в направлении +у будет теперь перемещением в направлении -у. Чтобы энергия при этом не менялась, Сххху должно переходить в -Сххху Но отраженный кристалл будет тем же, что и прежде, поэтому Сххxy должно быть таким же, как и -Сххху. Это может произойти только тогда, когда оба они равны нулю.

Но вы можете сказать: «Рассуждая таким же образом, можно сделать и Cyyyy=0!» Это неверно. Ведь здесь у нас четыре игрека. Каждый у изменяет знак, а четыре минуса дают плюс. Если у встречается два или четыре раза, то такие компоненты не должны быть равны нулю. Нулю равны только те компоненты, у которых у встречается либо один, либо три раза. Таким образом, для кубического кристалла не равны нулю только те С, у которых один и тот же значок встречается четное число раз. (Рассуждения, которые мы провели для у, имеют силу и для х и для z.) Таким образом, выживают только компоненты типа Сххуу, Схуху, Схуух и т. д. Однако мы уже показали, что если изменить все х на у и наоборот (или все z на x и т. д.), то для кубического кристалла мы должны получить то же самое число. Это означает, что остаются всего три различные ненулевые возможности:

(39.17)

Плотность же энергии для кубического кристалла выглядит так:

(39.18)

У изотропного, т. е. некристаллического, материала симметрия еще выше. Числа С должны быть теми же самыми при любом выборе осей координат. При этом, как оказывается, существует другая связь между коэффициентами С:

(39.19)

Это можно усмотреть из следующих общих рассуждений. Тензор напряжений Sij должен быть связан с eij способом, который совершенно не зависит от направления осей координат, т. е. он должен быть связан только с помощью скалярных величин. «Это очень просто», — скажете вы. «Единственный способ получить Sij из eij — умножить последнее на скалярную постоянную. Получится как раз закон Гука: Sij=(Постоянная)×еij». Однако это не совсем верно. Дополнительно здесь можно вставить единичный тензор δij, умноженный на некоторый скаляр, линейно связанный с еij. Единственный инвариант, который можно составить и который линеен по е, — это ∑eij. (Он преобразуется подобно х2+y2+z2, а значит является скаляром.) Таким образом, наиболее общей формой уравнения, связывающего Sij с eij для изотропного материала, будет

(39.20)

(Первая константа обычно записывается как 2μ; при этом коэффициент μ равен модулю сдвига, определенному нами в предыдущей главе.) Постоянные μ, и λ называются упругими постоянными Лямэ. Сравнивая уравнения (39.20) с уравнением (39.12), вы видите, что

(39.21)

Таким образом, мы доказали, что уравнение (39.19) действительно правильное. Вы видите также, что упругие свойства изотропного материала, как уже говорилось в предыдущей главе, полностью задаются двумя постоянными.

Коэффициенты С могут быть выражены через любые две из упругих постоянных, которые использовались ранее, например через модуль Юнга Y и отношение Пуассона σ. На вашу долю оставляю показать, что

(39.22)

§ 3. Движения в упругом теле

Мы подчеркивали, что в упругом теле, находящемся в равновесии, внутренние напряжения распределяются так, чтобы энергия была минимальной. Посмотрим теперь, что происходит, если внутренние силы не уравновешены. Возьмем маленький кусочек материала внутри некоторой поверхности А (фиг. 39.5).